Open Access
Issue |
RAIRO-Oper. Res.
Volume 58, Number 3, May-June 2024
|
|
---|---|---|
Page(s) | 2185 - 2237 | |
DOI | https://doi.org/10.1051/ro/2024053 | |
Published online | 10 June 2024 |
- M. Akram, S.M.U. Shah, M.M.A. Al-Shamiri and S.A. Edalatpanah, Extended DEA method for solving multi-objective transportation problem with Fermatean fuzzy sets. Aims Math. 8 (2023) 924–961. [CrossRef] [MathSciNet] [Google Scholar]
- G. Alefeld and J. Herzberger, Introduction to Interval Computations. Elsevier (1983). [Google Scholar]
- A. Baidya and U.K. Bera, An interval valued solid transportation problem with budget constraint in different interval approaches. J. Transp. Secur. 7 (2014) 147–155. [CrossRef] [Google Scholar]
- A. Baidya, U.K. Bera and M. Maiti, Solution of multi-item interval valued solid transportation problem with safety measure using different methods. Opsearch 51 (2014) 1–22. [CrossRef] [MathSciNet] [Google Scholar]
- A.K. Bind, D. Rani, K.K. Goyal and A. Ebrahimnejad, A solution approach for sustainable multi-objective multi-item 4D solid transportation problem involving triangular intuitionistic fuzzy parameters. J. Cleaner Prod. 414 (2023) 137661. [CrossRef] [Google Scholar]
- A. Charnes and W.W. Cooper, Management models and industrial applications of linear programming. Manage. Sci. 4 (1957) 38–91. [CrossRef] [Google Scholar]
- S.K. Das, M. Pervin, S.K. Roy and G.W. Weber, Multi-objective solid transportation-location problem with variable carbon emission in inventory management: a hybrid approach. Ann. Oper. Res. 324 (2023) 283–309. [CrossRef] [MathSciNet] [Google Scholar]
- E. Fathy, A new method for solving the linear programming problem in an interval-valued intuitionistic fuzzy environment. Alexandria Eng. J. 61 (2022) 10419–10432. [CrossRef] [Google Scholar]
- S. Ghosh, K.-H. Küfer, S.K. Roy and G.-W. Weber, Carbon mechanism on sustainable multi-objective solid transportation problem for waste management in pythagorean hesitant fuzzy environment. Complex Intell. Syst. 8 (2022) 4115–4143. [CrossRef] [Google Scholar]
- S. Ghosh, S.K. Roy and J.L. Verdegay, Fixed-charge solid transportation problem with budget constraints based on carbon emission in neutrosophic environment. Soft Comput. 26 (2022) 11611–11625. [CrossRef] [Google Scholar]
- S. Ghosh, K.-H. Küfer, S.K. Roy and G.-W. Weber, Type-2 zigzag uncertain multi-objective fixed-charge solid transportation problem: time window vs. preservation technology. Cent. Eur. J. Oper. Res. 31 (2023) 337–362. [CrossRef] [MathSciNet] [Google Scholar]
- S. Ghosh, S.K. Roy and G.-W. Weber, Interactive strategy of carbon cap-and-trade policy on sustainable multi-objective solid transportation problem with twofold uncertain waste management. Ann. Oper. Res. 326 (2023) 157–197. [CrossRef] [MathSciNet] [Google Scholar]
- B.K. Giri and S.K. Roy, Neutrosophic multi-objective green four-dimensional fixed-charge transportation problem. Int. J. Mach. Learn. Cybern. 13 (2022) 3089–3112. [CrossRef] [Google Scholar]
- A. Goli, E.B. Tirkolaee and G.-W. Weber, A perishable product sustainable supply chain network design problem with lead time and customer satisfaction using a hybrid whale-genetic algorithm, in Logistics Operations and Management for Recycling and Reuse. EcoProduction, edited by P. Golinska-Dawson. Springer, Berlin, Heidelberg (2020) 99–124. [CrossRef] [Google Scholar]
- A. Goli, A. Ala and S. Mirjalili, A robust possibilistic programming framework for designing an organ transplant supply chain under uncertainty. Ann. Oper. Res. 328 (2023) 493–530. [CrossRef] [MathSciNet] [Google Scholar]
- A. Goli, E.B. Tirkolaee, A.-M. Golmohammadi, Z. Atan, G.-W. Weber and S.S. Ali, A robust optimization model to design an IoT-based sustainable supply chain network with flexibility. Cent. Eur. J. Oper. Res. (2023) 1–22. DOI: 10.1007/s10100-023-00870-4. [Google Scholar]
- P. Grzegorzewski, Nearest interval approximation of a fuzzy number. Fuzzy Sets Syst. 130 (2002) 321–330. [CrossRef] [Google Scholar]
- S. Gütmen, S.K. Roy and G.-W. Weber, An overview of weighted goal programming: a multi-objective transportation problem with some fresh viewpoints. Cent. Eur. J. Oper. Res. (2023) 1–12. DOI: 10.1007/s10100-023-00861-5. [Google Scholar]
- K.B Haley, New methods in mathematical programming – the solid transportation problem. Oper. Res. 10 (1962) 448–463. [CrossRef] [Google Scholar]
- W.M. Hirsch and G.B. Dantzig, The fixed charge problem. Nav. Res. Logistics Q. 15 (1968) 413–424. [CrossRef] [Google Scholar]
- F.L. Hitchcock, The distribution of a product from several sources to numerous localities. J. Math. Phys. 20 (1941) 224–230. [Google Scholar]
- B.Q. Hu and S. Wang, A novel approach in uncertain programming part I: new arithmetic and order relation for interval numbers. J. Ind. Manage. Optim. 2 (2006) 351–371. [CrossRef] [Google Scholar]
- H.A.E.W. Khalifa and P. Kumar, A goal programming approach for multi-objective linear fractional programming problem with LR possibilistic variables. Int. J. Syst. Assur. Eng. Manage. 13 (2022) 2053–2061. [CrossRef] [Google Scholar]
- B. Liu, Uncertainty Theory, 2nd edition. SpringerVerlag, Berlin (2007). [Google Scholar]
- B. Liu, Theory and Practice of Uncertain Programming. Springer, Berlin, Heidelberg (2009). [CrossRef] [Google Scholar]
- B. Liu, Uncertainty Theory: A Branch of Mathematics for Modelling Human Uncertainty. Springer-Verlag, Berlin, Heidelberg (2010). [Google Scholar]
- G. Maity, S.K. Roy and J.L. Verdegay, Time variant multi-objective interval-valued transportation problem in sustainable development. Sustainability 11 (2019) 6161. [Google Scholar]
- S. Majumder, P. Kundu, S. Kar and T. Pal, Uncertain multi-objective multi-item fixed charge solid transportation problem with budget constraint. Soft Comput. 23 (2019) 3279–3301. [CrossRef] [Google Scholar]
- D. Mardanya and S.K. Roy, Time variant multi-objective linear fractional interval-valued transportation problem. Appl. Math. J. Chin. Univ. 37 (2022) 111–130. [CrossRef] [Google Scholar]
- D. Mardanya and S.K. Roy, New approach to solve fuzzy multi-objective multi-item solid transportation problem. RAIRO-Oper. Res. 57 (2023) 99–120. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- D. Mardanya, G. Maity, S.K. Roy and F.Y. Vincent, Solving the multi-modal transportation problem via the rough interval approach. RAIRO-Oper. Res. 56 (2022) 3155–3185. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- S. Midya, S.K. Roy and V.F. Yu, Intuitionistic fuzzy multi-stage multi-objective fixed-charge solid transportation problem in a green supply chain. Int. J. Mach. Learn. Cybern. 12 (2021) 699–717. [CrossRef] [Google Scholar]
- A. Mondal, S.K. Roy and S. Midya, Intuitionistic fuzzy sustainable multi-objective multi-item multi-choice step fixed-charge solid transportation problem. J. Ambient Intell. Humanized Comput. 14 (2023) 6975–6999. [CrossRef] [Google Scholar]
- R.E. Moore, Methods and Applications of Interval Analysis. SIAM (1979). [Google Scholar]
- X. Sheng, L. Chen, X. Yuan, Y. Tang, Q. Yuan, R. Chen, Q. Wang, Q. Ma, J. Zuo and H. Liu, Green supply chain management for a more sustainable manufacturing industry in china: a critical review. Environ. Dev. Sustainability 25 (2023) 1151–1183. [CrossRef] [Google Scholar]
- T. Sifaoui and M. A¨ıder, Uncertain interval programming model for multi-objective multi-item fixed charge solid transportation problem with budget constraint and safety measure. Soft Comput. 24 (2020) 10123–10147. [CrossRef] [Google Scholar]
- T. Sifaoui and M. A¨ıder, A Multi-objective Solid Transportation Problem in Sustainable Development. Springer (2022) 235–254. [Google Scholar]
- G. Tian, W. Lu, X. Zhang, M. Zhan, M.A. Dulebenets, A. Aleksandrov, A.M. Fathollahi-Fard and M. Ivanov, A survey of multi-criteria decision-making techniques for green logistics and low-carbon transportation systems. Environ. Sci. Pollut. Res. 30 (2023) 57279–57301. [CrossRef] [Google Scholar]
- M.-L. Tseng, M.S. Islam, N. Karia, F.A. Fauzi and S. Afrin, A literature review on green supply chain management: trends and future challenges. Res. Conserv. Recycl. 141 (2019) 145–162. [CrossRef] [Google Scholar]
- V.F. Yu, K.-J. Hu and A.-Y. Chang, An interactive approach for the multi-objective transportation problem with interval parameters. Int. J. Prod. Res. 53 (2015) 1051–1064. [CrossRef] [Google Scholar]
- L.A. Zadeh, Fuzzy sets. Inf. Control 8 (1965) 338–353. [Google Scholar]
- K. Zhu, K. Ji and J. Shen, A fixed charge transportation problem with damageable items under uncertain environment. Phys. A Stat. Mech. App. 581 (2021) 126234. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.