Open Access
Issue |
RAIRO-Oper. Res.
Volume 58, Number 4, July-August 2024
|
|
---|---|---|
Page(s) | 3607 - 3619 | |
DOI | https://doi.org/10.1051/ro/2024090 | |
Published online | 09 September 2024 |
- J. Balogh, R. Morris and W. Samotij, Independent sets in hypergraphs. J. Amer. Math. Soc. 28 (2015) 669–709. [Google Scholar]
- L. Barrière, F. Comellas, C. Dalfó and M.A. Fiol, The hierarchical product of graphs. Discrete Appl. Math. 157 (2009) 36–48. [CrossRef] [MathSciNet] [Google Scholar]
- G. Barros, B. Cavalar, Y. Kohayakawa, G. Mota and T. Naia, Oriented graphs with lower orientation Ramsey thresholds, in Extended Abstracts – EuroComb 2021, edited by J. Nešetřil, G. Perarnau, J. Rué and O. Serra. Springer International Publishing, Cham (2021) 799–804. [Google Scholar]
- G.F. Barros, B.P. Cavalar, Y. Kohayakawa and T. Naia, Orientation Ramsey thresholds for cycles and cliques. SIAM J. Discrete Math. 35 (2021) 2844–2857. [CrossRef] [MathSciNet] [Google Scholar]
- B. Bollobás and A. Thomason, Threshold functions. Combinatorica 7 (1987) 35–38. [CrossRef] [MathSciNet] [Google Scholar]
- S.A. Burr, Subtrees of directed graphs and hypergraphs. Congr. Numer. 28 (1980) 227–239. [MathSciNet] [Google Scholar]
- D. Conlon, W.T. Gowers, W. Samotij and M. Schacht, On the KŁR conjecture in random graphs. Israel J. Math. 203 (2014) 535–580. [CrossRef] [MathSciNet] [Google Scholar]
- F. Dross and F. Havet, On the unavoidability of oriented trees. J. Combin. Theory Ser. B 151 (2021) 83–110. [CrossRef] [MathSciNet] [Google Scholar]
- P. Erdős and L. Moser, On the representation of directed graphs as unions of orderings. Magyar Tud. Akad. Mat. Kutató Int. Közl. 9 (1964) 125–132. [MathSciNet] [Google Scholar]
- P. Erdős and M. Simonovits, Supersaturated graphs and hypergraphs. Combinatorica 3 (1983) 181–192. [CrossRef] [MathSciNet] [Google Scholar]
- R. H¨aggkvist and A. Thomason, Trees in tournaments. Combinatorica 11 (1991) 123–130. [CrossRef] [MathSciNet] [Google Scholar]
- H. Hàn, T. Retter, V. Rödl and M. Schacht, Ramsey-type numbers involving graphs and hypergraphs with large girth. Combin. Probab. Comput. 30 (2021) 722–740. [CrossRef] [MathSciNet] [Google Scholar]
- S. Janson, T. Łuczak and A. Ruciński, Random Graphs. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York (2000). [Google Scholar]
- B. Kreuter, Threshold functions for asymmetric Ramsey properties with respect to vertex colorings. Random Struct. Algorithms 9 (1996) 335–348. [CrossRef] [Google Scholar]
- D. Kühn, R. Mycroft and D. Osthus, A proof of Sumner’s universal tournament conjecture for large tournaments. Proc. Lond. Math. Soc. 102 (2011) 731–766. [CrossRef] [MathSciNet] [Google Scholar]
- N. Linial, M. Saks and V.T. Sós, Largest digraphs contained in all n-tournaments. Combinatorica 3 (1983) 101–104. [CrossRef] [MathSciNet] [Google Scholar]
- R. Mycroft and T. Naia, Unavoidable trees in tournaments. Random Struct. Algorithms 53 (2018) 352–385. [CrossRef] [Google Scholar]
- T. Naia, Trees contained in every orientation of a graph. Electron. J. Combin. 29 (2022) P.2.26. [CrossRef] [Google Scholar]
- R. Nenadov, Y. Person, N. Škorić and A. Steger, An algorithmic framework for obtaining lower bounds for random Ramsey problems. J. Combin. Theory Ser. B 124 (2017) 1–38. [CrossRef] [MathSciNet] [Google Scholar]
- V. Rödl and A. Ruciński. Lower bounds on probability thresholds for Ramsey properties. In Combinatorics, Paul Erdős is eighty, Bolyai Soc. Math. Stud., János Bolyai Math. Soc., Budapest, 1 (1993) 317–346. [Google Scholar]
- V. Rödl and A. Ruciński, Threshold functions for Ramsey properties. J. Amer. Math. Soc. 8 (1995) 917–942. [CrossRef] [MathSciNet] [Google Scholar]
- D. Saxton and A. Thomason, Hypergraph containers. Invent. Math. 201 (2015) 925–992. [CrossRef] [MathSciNet] [Google Scholar]
- A. Thomason, Paths and cycles in tournaments. Trans. Amer. Math. Soc. 296 (1986) 167–180. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.