Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 4, July-August 2024
Page(s) 3347 - 3367
DOI https://doi.org/10.1051/ro/2024125
Published online 15 August 2024
  • Y.P. Aneja and K.P.K. Nair, Bicriteria transportation problem. Manag. Sci. 25 (1979) 73–78. [CrossRef] [Google Scholar]
  • C. Bazgan, H. Hugot and D. Vanderpooten, Implementing an efficient fptas for the 0–1 multi-objective knapsack problem. Eur. J. Oper. Res. 198 (2009) 47–56. [CrossRef] [Google Scholar]
  • C. Bazgan, H. Hugot and D. Vanderpooten, Solving efficiently the 0–1 multi-objective knapsack problem. Comput. Oper. Res. 36 (2009) 260–279. [CrossRef] [MathSciNet] [Google Scholar]
  • V.J. Bowman Jr., On the relationship of the tchebycheff norm and the efficient frontier of multiple-criteria objectives. In: Multiple Criteria Decision Making: Proceedings of a Conference Jouy-en-Josas, France May 21–23, 1975. Springer (1976) 76–86. [CrossRef] [Google Scholar]
  • V. Boyer, D. El Baz and M. Elkihel, Solving knapsack problems on gpu. Comput. Oper. Res. 39 (2012) 42–47. [CrossRef] [MathSciNet] [Google Scholar]
  • M.E. Captivo, J. Climaco, J. Figueira, E. Martins and J.L. Santos, Solving bicriteria 0–1 knapsack problems using a labeling algorithm. Comput. Oper. Res. 30 (2003) 1865–1886. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Cerqueus, A. Przybylski and X. Gandibleux, Surrogate upper bound sets for bi-objective bi-dimensional binary knapsack problems. Eur. J. Oper. Res. 244 (2015) 417–433. [CrossRef] [Google Scholar]
  • M. Daoud and D. Chaabane, New reduction strategy in the biobjective knapsack problem. Int. Trans. Oper. Res. 25 (2018) 1739–1762. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Ehrgott and X. Gandibleux, A survey and annotated bibliography of multiobjective combinatorial optimization. OR-Spektrum 22 (2000) 425–460. [CrossRef] [Google Scholar]
  • M. Ehrgott and X. Gandibleux, Multiobjective Combinatorial Optimization–Theory, Methodology, and Applications. Springer (2002) 369–444. [Google Scholar]
  • D. El Baz and M. Elkihel, Load balancing methods and parallel dynamic programming algorithm using dominance technique applied to the 0–1 knapsack problem. J. Parallel Distr. Comput. 65 (2005) 74–84. [CrossRef] [Google Scholar]
  • J. Figueira, L. Paquete, M. Simõoes and D. Vanderpooten, Algorithmic improvements on dynamic programming for the bi-objective {0, 1} knapsack problem. Comput. Optim. Appl. 56 (2013) 97–111. [CrossRef] [MathSciNet] [Google Scholar]
  • K. Florios, G. Mavrotas and D. Diakoulaki, Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms. Eur. J. Oper. Res. 203 (2010) 14–21. [CrossRef] [Google Scholar]
  • X. Gandibleux and A. Freville, Tabu search based procedure for solving the 0–1 multiobjective knapsack problem: The two objectives case. J. Heuristics 6 (2000) 361–383. [CrossRef] [Google Scholar]
  • X. Gandibleux, N. Mezdaoui and A. Fréville, A tabu search procedure to solve multiobjective combinatorial optimization problems. In: Advances in Multiple Objective and Goal Programming: Proceedings of the Second International Conference on Multi-Objective Programming and Goal Programming, Torremolinos, Spain, May 16–18, 1996. Springer (1997) 291–300. [Google Scholar]
  • X. Gandibleux, G. Soleilhac, A. Przybylski, F. Lucas, S. Ruzika and P. Halffmann, voptsolver, a get and run solver of multiobjective linear optimization problems built on julia and jump. In Vol. 88 MCDM2017: 24th International Conference on Multiple Criteria Decision Making (2017). [Google Scholar]
  • F. Glover, A multiphase-dual algorithm for the zero-one integer programming problem. Oper. Res. 13 (1965) 879–919. [CrossRef] [Google Scholar]
  • J. Jorge, Nouvelles propositions pour la résolution exacte du sac-à-dos multi-objectif unidimensionnel en variables binaires, Ph.D. thesis, Université de Nantes (2010). [Google Scholar]
  • M.E. Lalami and D. El-Baz, Gpu implementation of the branch and bound method for knapsack problems. In: 2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum. IEEE (2012) 1769–1777. [Google Scholar]
  • D.-C. Lou and C.-C. Chang, A parallel two-list algorithm for the knapsack problem. Parallel Comput. 22 (1997) 1985–1996. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Martello and P. Toth, A new algorithm for the 0–1 knapsack problem. Manag. Sci. 34 (1988) 633–644. [CrossRef] [Google Scholar]
  • S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer Implementations. John Wiley & Sons, Inc. (1990). [Google Scholar]
  • Nvidia, Cuda C++ Programming Guide: 11.7. 0 (2022). [Google Scholar]
  • W. Pettersson and M. Ozlen, Multiobjective integer programming: Synergistic parallel approaches. INFORMS J. Comput. 32 (2020) 461–472. [MathSciNet] [Google Scholar]
  • J. Shen, K. Shigeoka, F. Ino and K. Hagihara, Gpu-based branch-and-bound method to solve large 0–1 knapsack problems with data-centric strategies. Concurr. Comput. Pract. Exp. 31 (2019) e4954. [CrossRef] [Google Scholar]
  • E.L. Ulungu, Optimisation Combinatoire multicritère: Détermination de l’ensemble des solutions efficaces et méthodes interactives, Ph.D. thesis, Faculté des Sciences, Université de Mons-Hainaut, Mons, Belgique (1993). [Google Scholar]
  • E.L. Ulungu and J. Teghem, The two phases method: An efficient procedure to solve bi-objective combinatorial optimization problems. Found. Comput. Decis. Sci. 20 (1995) 149–165. [Google Scholar]
  • E.L. Ulungu, J. Teghem, Ph. Fortemps and D. Tuyttens, MOSA method: a tool for solving multiobjective combinatorial optimization problems. J. Multi-Criteria Decis. Anal. 8 (1999) 221–236. [CrossRef] [Google Scholar]
  • M. Visée, J. Teghem, M. Pirlot and E.L. Ulungu, Two-phases method and branch and bound procedures to solve the bi–objective knapsack problem. J. Glob. Optim. 12 (1998) 139–155. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.