Open Access
Issue |
RAIRO-Oper. Res.
Volume 58, Number 4, July-August 2024
|
|
---|---|---|
Page(s) | 3391 - 3416 | |
DOI | https://doi.org/10.1051/ro/2024117 | |
Published online | 27 August 2024 |
- N. Adler, V. Liebert and E. Yazhemsky, Benchmarking airports from a managerial perspective. Omega 41 (2013) 442–458. [CrossRef] [Google Scholar]
- S. Akther, H. Fukuyama and W.L. Weber, Estimating two-stage network slacks-based inefficiency: an application to bangladesh banking. Omega 41 (2013) 88–96. [CrossRef] [Google Scholar]
- Y. Alperovych, K. Amess and M. Wright, Private equity firm experience and buyout vendor source: What is their impact on efficiency? Eur. J. Oper. Res. 228 (2013) 601–611. [CrossRef] [Google Scholar]
- H. Amatatsu, T. Ueda and Y. Amatatsu, Efficiency and returns-to-scale of local governments. J. Oper. Res. Soc. 63 (2012) 299–305. [CrossRef] [Google Scholar]
- A. Amirteimoori, A DEA two-stage decision processes with shared resources. Cent. Eur. J. Oper. Res. 21 (2013) 141–151. [Google Scholar]
- N.K. Avkiran and A. McCrystal, Sensitivity analysis of network DEA: NSBM versus NRAM. Appl. Math. Comput. 218 (2012) 11226–11239. [Google Scholar]
- A. Babaei, M., Khedmati, M.R.A. Jokar and E.B. Tirkolaee, A decision support framework to evaluate the sustainability performance of urban road transportation. Environ. Sci. Pollut. Res. (2023) 1–22. [Google Scholar]
- X. Bai-Chen, F. Ying and Q. Qian-Qian, Does generation form influence environmental efficiency performance? An analysis of China’s power system. Appl. Energy 96 (2012) 261–271. [CrossRef] [Google Scholar]
- R.D. Banker, A. Charnes and W.W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manage. Sci. 30 (1984) 1078–1092. [Google Scholar]
- C. Bekaroğlu and D. Heffley, A multi-stage efficiency analysis of OECD healthcare systems. J. Manage. Econ. Res. 16 (2018) 264–285. [Google Scholar]
- G. Bi, C. Feng, J. Ding and M.R. Khan, Estimating relative efficiency of DMU: Pareto principle and monte carlo oriented DEA approach. INFOR: Inf. Syst. Oper. Res. 50 (2012) 44–57. [MathSciNet] [Google Scholar]
- A.S. Camanho, M.C. Silva, F.S. Piran and D.P. Lacerda, A literature review of economic efficiency assessments using data envelopment analysis. Eur. J. Oper. Res. 315 (2023) 1–18. [Google Scholar]
- L. Castelli, R. Pesenti and W. Ukovich, A classification of DEA models when the internal structure of the decision making units is considered. Ann. Oper. Res. 173 (2010) 207–235. [CrossRef] [MathSciNet] [Google Scholar]
- C.-T. Chang, Multi-choice goal programming. Omega 35 (2007) 389–396. [CrossRef] [Google Scholar]
- A. Charnes and W.W. Cooper, Management models and industrial applications of linear programming. Manage. Sci. 4 (1957) 38–91. [CrossRef] [Google Scholar]
- A. Charnes, W.W. Cooper and R.O. Ferguson, Optimal estimation of executive compensation by linear programming. Manage. Sci. 1 (1955) 138–151. [Google Scholar]
- A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
- P.-C. Chen, Measurement of technical efficiency in farrow-to-finish swine production using multi-activity network data envelopment analysis: evidence from Taiwan. J. Prod. Anal. 38 (2012) 319–331. [CrossRef] [Google Scholar]
- Y. Chen and J. Zhu, Measuring information technology’s indirect impact on firm performance. Inf. Technol. Manage. 5 (2004) 9–22. [Google Scholar]
- Y. Chen, W.D. Cook, N. Li and J. Zhu, Additive efficiency decomposition in two-stage DEA. Eur. J. Oper. Res. 196 (2009) 1170–1176. [Google Scholar]
- Y. Chen, W.D. Cook and J. Zhu, Deriving the DEA frontier for two-stage processes. Eur. J. Oper. Res. 202 (2010) 138–142. [Google Scholar]
- P.-C. Chen, C.-C. Chang, M.-M. Yu and S.-H. Hsu, Performance measurement for incineration plants using multi-activity network data envelopment analysis: the case of Taiwan. J. Environ. Manage. 93 (2012) 95–103. [CrossRef] [Google Scholar]
- Y. Chen, W.D. Cook, C. Kao and J. Zhu, Network DEA pitfalls: divisional efficiency and frontier projection, in Data Envelopment Analysis. Springer (2014) 31–54. [Google Scholar]
- L. Chen, Q. Xiao, J. Wang and Z. Fang, Research on dynamic evolutionary efficiency and regional differentiation of high-tech industrial chain networks. Sustainability 15 (2023) 16643. [CrossRef] [Google Scholar]
- Y.-H. Chiu, C.-W. Huang and Y.-C. Chen, The R&D value-chain efficiency measurement for high-tech industries in China. Asia Pac. J. Manage. 29 (2012) 989–1006. [CrossRef] [Google Scholar]
- W.D. Cook, L. Liang and J. Zhu, Measuring performance of two-stage network structures by DEA: a review and future perspective. Omega 38 (2010) 423–430. [Google Scholar]
- N.F. da Cruz, P. Carvalho and R.C. Marques, Disentangling the cost efficiency of jointly provided water and wastewater services. Utilities Policy 24 (2013) 70–77. [CrossRef] [Google Scholar]
- A.F. da Silva, F.A.S. Marins and J.A.B. Montevechi, Multi-choice mixed integer goal programming optimization for real problems in a sugar and ethanol milling company. Appl. Math. Modell. 37 (2013) 6146–6162. [CrossRef] [Google Scholar]
- D. Delikta¸s and O. Ustun, Student selection and assignment methodology based on fuzzy multimoora and multichoice goal programming. Int. Trans. Oper. Res. 24 (2017) 1173–1195. [CrossRef] [MathSciNet] [Google Scholar]
- D. Delikta¸s, E. Özcan, O. Ustun and O. Torkul, Evolutionary algorithms for multi-objective flexible job shop cell scheduling. Appl. Soft Comput. 113 (2021) 107890. [CrossRef] [Google Scholar]
- D. Delikta¸s, S. Karagoz, V. Simić and N. Aydin, A stochastic fermatean fuzzy-based multi-choice conic goal programming approach for sustainable supply chain management in end-of-life buildings. J. Clean. Prod. 382 (2023) 135305. [CrossRef] [Google Scholar]
- D.K. Despotis, G. Koronakos and D. Sotiros, A multi-objective programming approach to network DEA with an application to the assessment of the academic research activity. Proc. Comput. Sci. 55 (2015) 370–379. [CrossRef] [Google Scholar]
- D.K. Despotis, G. Koronakos and D. Sotiros, Composition versus decomposition in two-stage network DEA: a reverse approach. J. Prod. Anal. 45 (2016) 71–87. [CrossRef] [Google Scholar]
- D.K. Despotis, G. Koronakos and D. Sotiros, The “weak-link” approach to network DEA for two-stage processes. Eur. J. Oper. Res. 254 (2016) 481–492. [CrossRef] [Google Scholar]
- D.K. Despotis, D. Sotiros and G. Koronakos, A network DEA approach for series multi-stage processes. Omega 61 (2016) 35–48. [Google Scholar]
- A. Emrouznejad and G.-L. Yang, A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Soc.-Econ. Planning Sci. 61 (2018) 4–8. [CrossRef] [Google Scholar]
- R. F¨are and S. Grosskopf, Network DEA – socio-economic planning sciences. Issue 49 (2000) 34–35. [Google Scholar]
- H. Fukuyama and S.M. Mirdehghan, Identifying the efficiency status in network DEA. Eur. J. Oper. Res. 220 (2012) 85–92. [Google Scholar]
- H. Fukuyama and W. L. Weber, A slacks-based inefficiency measure for a two-stage system with bad outputs. Omega 38 (2010) 398–409. [CrossRef] [Google Scholar]
- N. Ghafari Someh, M.S. Pishvaee, S.J. Sadjadi and R. Soltani, Performance assessment of medical diagnostic laboratories: a network DEA approach. J. Eval. Clin. Pract. 26 (2020) 1504–1511. [CrossRef] [PubMed] [Google Scholar]
- K. Hafsal, A. Suvvari and S. Durai, Efficiency of indian banks with non-performing assets: evidence from two-stage network DEA. Future Bus. J. 6 (2020) 1–9. [CrossRef] [Google Scholar]
- H.-P. Ho, The supplier selection problem of a manufacturing company using the weighted multi-choice goal programming and minmax multi-choice goal programming. Appl. Math. Modell. 75 (2019) 819–836. [CrossRef] [Google Scholar]
- A. Hocine, Z.-Y. Zhuang, N. Kouaissah and D.-C. Li, Weighted-additive fuzzy multi-choice goal programming (WA-FMCGP) for supporting renewable energy site selection decisions. Eur. J. Oper. Res. 285 (2020) 642–654. [CrossRef] [Google Scholar]
- C. Kao, Dynamic data envelopment analysis: a relational analysis. Eur. J. Oper. Res. 227 (2013) 325–330. [CrossRef] [Google Scholar]
- C. Kao, Efficiency decomposition for general multi-stage systems in data envelopment analysis. Eur. J. Oper. Res. 232 (2014) 117–124. [Google Scholar]
- C. Kao, Network data envelopment analysis: a review. Eur. J. Oper. Res. 239 (2014) 1–16. [Google Scholar]
- C. Kao, Network data envelopment analysis with fuzzy data, in Performance Measurement with Fuzzy Data Envelopment Analysis. Springer (2014) 191–206 [CrossRef] [Google Scholar]
- C. Kao, Network Data Envelopment Analysis: Foundations and Extensions. Vol. 240. Springer (2016). [Google Scholar]
- C. Kao and S.-N. Hwang, Efficiency decomposition in two-stage data envelopment analysis: an application to non-life insurance companies in Taiwan. Eur. J. Oper. Res. 185 (2008) 418–429. [Google Scholar]
- C. Kao and S.-N. Hwang, Multi-period efficiency and malmquist productivity index in two-stage production systems. Eur. J. Oper. Res. 232 (2014) 512–521. [CrossRef] [Google Scholar]
- C. Kao and P.-H. Lin, Efficiency of parallel production systems with fuzzy data. Fuzzy Sets Syst. 198 (2012) 83–98. [CrossRef] [Google Scholar]
- C. Kao and S.-T. Liu, Multi-period efficiency measurement in data envelopment analysis: the case of Taiwanese commercial banks. Omega 47 (2014) 90–98. [CrossRef] [Google Scholar]
- H.-Y. Kao, C.-H. Lan and C.-H. Hsu, Efficiency evaluation of business in IoT supply chains by network DEA. J. Int. Technol. 24 (2023) 1361–1368. [Google Scholar]
- R. Kasimbeyli, A conic scalarization method in multi-objective optimization. J. Global Optim. 56 (2013) 279–297. [CrossRef] [MathSciNet] [Google Scholar]
- H. Kawaguchi, K. Tone and M. Tsutsui, Estimation of the efficiency of Japanese hospitals using a dynamic and network data envelopment analysis model. Health Care Manage. Sci. 17 (2014) 101–112. [CrossRef] [PubMed] [Google Scholar]
- G. Koronakos, A taxonomy and review of the network data envelopment analysis literature, in Machine Learning Paradigms. Springer (2019) 255–311. [Google Scholar]
- G. Koronakos, D. Sotiros and D.K. Despotis, Reformulation of network data envelopment analysis models using a common modelling framework. Eur. J. Oper. Res. 278 (2019) 472–480. [Google Scholar]
- Q.L. Kweh, W.-M. Lu, K. Tone and H.-M. Liu, Evaluating the resource management and profitability efficiencies of US commercial banks from a dynamic network perspective. Finan. Innov. 10 (2024) 19. [CrossRef] [Google Scholar]
- A.H. Lee, H.-Y. Kang, C.-Y. Yang and C.-Y. Lin, An evaluation framework for product planning using FANP, QFD and multi-choice goal programming. Int. J. Prod. Res. 48 (2010) 3977–3997. [CrossRef] [Google Scholar]
- H.F. Lewis, S. Mallikarjun and T.R. Sexton, Unoriented two-stage DEA: the case of the oscillating intermediate products. Eur. J. Oper. Res. 229 (2013) 529–539. [CrossRef] [Google Scholar]
- Y. Li, Y. Chen, L. Liang and J. Xie, DEA models for extended two-stage network structures. Omega 40 (2012) 611–618. [CrossRef] [Google Scholar]
- Y. Li, X. Shi, A. Emrouznejad and L. Liang, Environmental performance evaluation of Chinese industrial systems: a network SBM approach. J. Oper. Res. Soc. 69 (2018) 825–839. [CrossRef] [Google Scholar]
- L. Liang, W.D. Cook and J. Zhu, DEA models for two-stage processes: game approach and efficiency decomposition. Nav. Res. Logistics (NRL) 55 (2008) 643–653. [CrossRef] [Google Scholar]
- C.-N. Liao and H.-P. Kao, Supplier selection model using Taguchi loss function, analytical hierarchy process and multi-choice goal programming. Comput. Ind. Eng. 58 (2010) 571–577. [CrossRef] [Google Scholar]
- S. Lim and J. Zhu, Integrated data envelopment analysis: global vs. local optimum. Eur. J. Oper. Res. 229 (2013) 276–278. [CrossRef] [Google Scholar]
- T.-Y. Lin and S.-H. Chiu, Using independent component analysis and network DEA to improve bank performance evaluation. Econ. Modell. 32 (2013) 608–616. [CrossRef] [Google Scholar]
- R. Lin and Z. Li, Directional distance based cross-efficiency evaluation and decomposition for parallel two-stage systems: an application to equity funds. Expert Syst. App. 242 122760. [Google Scholar]
- S.-J. Lin, T.-M. Chang and M.-F. Hsu, Valuing and risk analysis for supply chain management: a fusion approach. J. Global Inf. Manage. (JGIM) 31 (2023) 1–25. [Google Scholar]
- R. Lin, L. Ding and Z. Li, Efficiency evaluation and productivity analysis of complex electric power systems in China: a directional slacks-based network data envelopment analysis approach. Int. J. Electr. Power Energy Syst. 156 (2024) 109751. [CrossRef] [Google Scholar]
- J.S. Liu and W.-M. Lu, Network-based method for ranking of efficient units in two-stage DEA models. J. Oper. Res. Soc. 63 (2012) 1153–1164. [CrossRef] [Google Scholar]
- J.S. Liu, L.Y. Lu, W.-M. Lu and B.J. Lin, Data envelopment analysis 1978–2010: a citation-based literature survey. Omega 41 (2013) 3–15. [CrossRef] [Google Scholar]
- J.S. Liu, L.Y. Lu, W.-M. Lu and B.J. Lin, A survey of DEA applications. Omega 41 (2013) 893–902. [CrossRef] [Google Scholar]
- S. Lozano, E. Gutierrez and P. Moreno, Network DEA approach to airports performance assessment considering undesirable outputs. Appl. Math. Modell. 37 (2013) 1665–1676. [CrossRef] [Google Scholar]
- W.-M. Lu, W.-K. Wang, S.-W. Hung and E.-T. Lu, The effects of corporate governance on airline performance: production and marketing efficiency perspectives. Transp. Res. Part E: Logistics Transp. Rev. 48 (2012) 529–544. [CrossRef] [Google Scholar]
- W.-M. Lu, W.-K. Wang and Q.L. Kweh, Intellectual capital and performance in the Chinese life insurance industry. Omega 42 (2014) 65–74. [CrossRef] [Google Scholar]
- K. Matthews, Risk management and managerial efficiency in Chinese banks: a network DEA framework. Omega 41 (2013) 207–215. [Google Scholar]
- K. Miettinen, Nonlinear Multiobjective Optimization. Vol. 12. Springer Science and Business Media (2012). [Google Scholar]
- P. Moreno, S. Lozano and E. Gutiérrez, Dynamic performance analysis of US wireline telecommunication companies. Telecommun. Policy 37 (2013) 469–482. [CrossRef] [Google Scholar]
- J. Nouri, F.H. Lotfi, H. Borgheipour, F. Atabi, S.M. Sadeghzadeh and Z. Moghaddas, An analysis of the implementation of energy efficiency measures in the vegetable oil industry of Iran: a data envelopment analysis approach. J. Clean. Prod. 52 (2013) 84–93. [CrossRef] [Google Scholar]
- A. Omid, A. Azar and M. Taleb, Assessing environmental and operational efficiencies: a multi-objective optimization problem in a two-stage network data envelopment analysis. IMA J. Manage. Math. (2023) dpad025. [Google Scholar]
- Y.A. Ozcan and J. Khushalani, Assessing efficiency of public health and medical care provision in OECD countries after a decade of reform. Cent. Eur. J. Oper. Res. 25 (2017) 325–343. [CrossRef] [MathSciNet] [Google Scholar]
- T. Paksoy and C.-T. Chang, Revised multi-choice goal programming for multi-period, multi-stage inventory controlled supply chain model with popup stores in Guerrilla marketing. Appl. Math. Modell. 34 (2010) 3586–3598. [CrossRef] [Google Scholar]
- I.M. Premachandra, J. Zhu, J. Watson and D.U. Galagedera, Best-performing us mutual fund families from 1993 to 2008: evidence from a novel two-stage DEA model for efficiency decomposition. J. Banking Finan. 36 (2012) 3302–3317. [CrossRef] [Google Scholar]
- X. Qin and D. Du, Measuring universities’ R&D performance in China’s provinces: a multistage efficiency and effectiveness perspective. Technol. Anal. Strategic Manage. 30 (2018) 1392–1408. [CrossRef] [Google Scholar]
- N. Rogge and S. De Jaeger, Evaluating the efficiency of municipalities in collecting and processing municipal solid waste: a shared input DEA-model. Waste Manage. 32 (2012) 1968–1978. [CrossRef] [Google Scholar]
- B.K. Sahoo, H. Saleh, M. Shafiee, K. Tone and J. Zhu, An alternative approach to dealing with the composition approach for series network production processes. Asia-Pac. J. Oper. Res. 38 (2021) 2150004. [CrossRef] [Google Scholar]
- M. Shamohammadi and D.-H. Oh, Measuring the efficiency changes of private universities of Korea: a two-stage network data envelopment analysis. Technol. Forecasting Soc. Change 148 (2019) 119730. [CrossRef] [Google Scholar]
- X. Shi, A. Emrouznejad and W. Yu, Overall efficiency of operational process with undesirable outputs containing both series and parallel processes: a SBM network DEA model. Expert Syst. App. 178 (2021) 115062. [CrossRef] [Google Scholar]
- Z. Shi, H. Huang, Y.-H. Chiu, B. Zhang and C. Zhang, Linkage analysis of water resources, wastewater pollution, and health for regional sustainable development – using undesirable three-stage dynamic data envelopment analysis. Environ. Sci. Pollut. Res. 28 (2021) 19325–19350. [CrossRef] [PubMed] [Google Scholar]
- H. Shirouyehzad, J. Jouzdani and M. Khodadadi Karimvand, Fight against COVID-19: a global efficiency evaluation based on contagion control and medical treatment. J. Appl. Res. Ind. Eng. 7 (2020) 109–120. [Google Scholar]
- S. Singh and Sonia, Multi-choice programming: an overview of theories and applications. Optimization 66 (2017) 1713–1738. [CrossRef] [MathSciNet] [Google Scholar]
- T. Skevas, A.O. Lansink and S.E. Stefanou, Measuring technical efficiency in the presence of pesticide spillovers and production uncertainty: the case of Dutch arable farms. Eur. J. Oper. Res. 223 (2012) 550–559. [CrossRef] [Google Scholar]
- M. Soleimani-Damaneh, Another approach for estimating RTS in dynamic DEA. J. Prod. Anal. 39 (2013) 75–81. [CrossRef] [Google Scholar]
- M. Soleimani-Damaneh, An enumerative algorithm for solving nonconvex dynamic DEA models. Optim. Lett. 7 (2013) 101–115. [CrossRef] [MathSciNet] [Google Scholar]
- K.H. Song, S. Choi and I.H. Han, Competitiveness evaluation methodology for aviation industry sustainability using network DEA. Sustainability 12 (2020) 10323. [CrossRef] [Google Scholar]
- D. Sotiros, G. Koronakos and D.K. Despotis, Dominance at the divisional efficiencies level in network DEA: the case of two-stage processes. Omega 85 (2019) 144–155. [CrossRef] [Google Scholar]
- K. Tone and M. Tsutsui, Network DEA: a slacks-based measure approach. Eur. J. Oper. Res. 197 (2009) 243–252. [Google Scholar]
- K. Tone and M. Tsutsui, Dynamic DEA with network structure: a slacks-based measure approach. Omega 42 (2014) 124–131. [CrossRef] [Google Scholar]
- I.E. Tsolas, Modeling profitability and stock market performance of listed construction firms on the Athens exchange: two-stage DEA approach. J. Constr. Eng. Manage. 139 (2013) 111–119. [CrossRef] [Google Scholar]
- O. Ustun, Multi-choice goal programming formulation based on the conic scalarizing function. Appl. Math. Modell. 36 (2012) 974–988. [CrossRef] [Google Scholar]
- C.-H. Wang, Y.-H. Lu, C.-W. Huang and J.-Y. Lee, R&D, productivity, and market value: an empirical study from high-technology firms. Omega 41 (2013) 143–155. [CrossRef] [Google Scholar]
- L. Xue, M. Li, Z. Zheng, S. Xi, Y. Yang, W. Yang and Q. Hou, Assessing the progress of the mining industry towards green growth in China: a three-stage dynamic network slacks-based measure approach. J. Clean. Prod. 435 (2024) 140478. [CrossRef] [Google Scholar]
- C. Yang and H.-M. Liu, Managerial efficiency in Taiwan bank branches: a network DEA. Econ. Modell. 29 (2012) 450–461. [CrossRef] [Google Scholar]
- M.-M. Yu, Performance assessment of transport services with the ERM-NDEA model: evidence from a domestic airline in Taiwan. Transp. Planning Technol. 35 (2012) 697–714. [CrossRef] [Google Scholar]
- Q. Zhang, Z. Yang and B. Gui, Two-stage network data envelopment analysis production games. AIMS Math. 9 (2024) 4925–4961. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Zhou, L. Sun, W. Yang, W. Liu and C. Ma, A bargaining game model for efficiency decomposition in the centralized model of two-stage systems. Comput. Ind. Eng. 64 (2013) 103–108. [CrossRef] [Google Scholar]
- M. Zoriehhabib, M.R. Malkhalifeh and F.H. Lotfi, Portion reduction procedure in the two-stage network DEA. J. Math. Extension 17 (2023) 1–33. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.