Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 4, July-August 2024
Page(s) 3417 - 3438
DOI https://doi.org/10.1051/ro/2024060
Published online 02 September 2024
  • P.A. Absil, R. Mahony and B. Andrews, Convergence of the iterates of descent methods for analytic cost functions. SIAM J. Optim. 16 (2005) 531–547. [CrossRef] [MathSciNet] [Google Scholar]
  • E. Asplund, Fréchet differentiability of convex functions. Acta Math. 121 (1968) 31–47. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Attouch and A. Soubeyran, Local search proximal algorithms as decision dynamics with costs to move. Set-Valued Var. Anal. 19 (2011) 157–177. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Attouch, J. Bolte, P. Redont and A. Soubeyran, Proximal alternating minimization and projection methods for nonconvex problems. An approach based on the Kurdyka–Lojasiewicz inequality. Math. Oper. Res. 35 (2010) 438–457. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Attouch, L.M. Briceño-Arias and P.L. Combettes, A parallel splitting method for coupled monotone inclusions. SIAM J. Control Optim. 48 (2010) 3246–3270. [CrossRef] [Google Scholar]
  • H. Attouch, J. Bolte and B. Svaiter, Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods. Math. Program. 137 (2013) 91–129. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Attouch, G. Buttazzo and G. Michaillen, Variational Analysis in Sobolev and BV Spaces. MPS-SIAM Series on Optimization. Springer, New York (2014). [Google Scholar]
  • T.Q. Bao, B.S. Mordukhovich, A. Soubeyran and C. Tammer, Vector optimization with domination structures: variational principles and applications. Set-Valued Var. Anal. 30 (2022) 695–729. [CrossRef] [MathSciNet] [Google Scholar]
  • G.C. Bento, O.P. Ferreira, A. Soubeyran and J.V.L. Sousa, Inexact multi-objective local search proximal algorithms: application to group dynamic and distributive justice problems. J. Optim. Theory Appl. 177 (2018) 181–200. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Bertero, P. Boccacci and V. Ruggiero, Inverse Imaging with Poisson Data. IOP Publishing, Bristol (2018). [CrossRef] [Google Scholar]
  • J. Bolte, S. Sabach, M. Teboulle and Y. Vaisbourd, First order methods beyond convexity and Lipschitz gradient continuity with applications to quadratic inverse problems. SIAM J. Optim. 28 (2018) 2131–2151. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Bonettini, P. Ochs, M. Prato and S. Rebegoldi, An abstract convergence framework with application to inertial inexact forward–backward methods. Comput. Optim. Appl. 84 (2023) 319–362. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Bottou, F.E. Curtis and J. Nocedal, Optimization methods for large-scale machine learning. SIAM Rev. 60 (2018) 223–311. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011). [Google Scholar]
  • E. Castillo Ventura and E.A. Papa Quiroz, Abstract algorithm of generalized epsilon descent: global convergence and rate of convergence. Working Paper (2022). [Google Scholar]
  • A. Chambolle and T. Pock, An introduction to continuous optimization for imaging. Acta Numer. 25 (2016) 161–319. [CrossRef] [MathSciNet] [Google Scholar]
  • P.L. Combettes and V.R. Wajs, Signal recovery by proximal forward–backward splitting. Multiscale Model. Simul. 4 (2005) 1168–1200. [CrossRef] [MathSciNet] [Google Scholar]
  • H.B. Curry, The method of steepest descent for non-linear minimization problems. Q. Appl. Math. 1944 (2013) 258–261. [Google Scholar]
  • B.G. de Carvalho, S.D.B. Bitar, N.J.X. da Cruz, A. Soubeyran and S.J.C. de Oliveira, A proximal point method for difference of convex functions in multi-objective optimization with application to group dynamic problems. Comput. Optim. Appl. 75 (2020) 263–290. [CrossRef] [MathSciNet] [Google Scholar]
  • O.P. Ferreira and P.R. Oliveira, Subgradient algorithm on Riemannian manifolds. J. Optim. Theory Appl. 97 (1998) 93–104. [CrossRef] [MathSciNet] [Google Scholar]
  • P. Frankel, G. Garrigos and J. Peypouquet, Splitting methods with variable metric for Kurdyka–Lojasiewicz functions and general convergence rates. J. Optim. Theory Appl. 165 (2015) 874–900. [CrossRef] [MathSciNet] [Google Scholar]
  • P. Gajardo, Introducción al Análisis Convexo. Instituto de Matemáticas. Pontificie Universidad Catóolica de Valparaíıso (2006). [Google Scholar]
  • Y. Hu, X. Yang and C.K. Sim, Inexact subgradient methods for quasi-convex optimization problems. Eur. J. Oper. Res. 240 (2015) 315–327. [CrossRef] [Google Scholar]
  • A. Jofre, D.T. Luc and M. Thera, ɛ-subdiferential and ɛ-monotonicity. Nonlinear Anal. Theory Methods Appl. 33 (1998) 71–90. [CrossRef] [Google Scholar]
  • E. Kreyszig, Introductory Functional Analysis with Applications. Wiley Classics Library (1989). [Google Scholar]
  • A.Y. Kruger, On Fréchet subdifferentials. J. Math. Sci. 116 (2003) 3325–3358. [CrossRef] [MathSciNet] [Google Scholar]
  • B.S. Mordukhovich, Principio Extremal en Análisis Variacional, En: Análisis variacional y diferenciación generalizada I. Grundlehren der mathematischen Wissenschaften. Vol. 330. Springer, Berlin (2006). [Google Scholar]
  • F.A.G. Moreno, P.R. Oliveira and A. Soubeyran, A proximal algorithm with quasi distance. Application to Habit’s formation. Optimization 61 (2012) 1383–1403. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Palis and W. Melo, Geometric Theory of Dynamical Systems. Springer, New York (1982). [CrossRef] [Google Scholar]
  • E.A. Papa Quiroz, M. Ramirez and P.R. Oliveira, An inexact proximal method for quasiconvex minimization. Eur. J. Oper. Res. 246 (2015) 721–729. [CrossRef] [Google Scholar]
  • E.A. Papa Quiroz, A. Soubeyran and P.R. Oliveira, Coercivity and generalized proximal algorithms: application – traveling around the world. Ann. Oper. Res. 321 (2022) 451–467. [Google Scholar]
  • J. Peypouquet, Optimización y Sistemas Dinámicos, Instituto Venezolano de Investigaciones Científicas (2013). [Google Scholar]
  • B.T. Polyak, Introduction to Optimization. Optimization Software, New York (1987). [Google Scholar]
  • B.E. Rojas, Existencia de solución débil de un problema semilineal elíptico. Tesis de Licenciatura inédita, Universidad Nacional Mayor de San Marcos (2016). [Google Scholar]
  • A. Soubeyran and J.C.D.O. Souza, General descent method using w-distance. Application to emergence of habits following worthwhile moves. J. Nonlinear Var. Anal. 4 (2020) 285–300. [Google Scholar]
  • T. Sun, K. Tang and D. Li, Gradient descent learning with floats. IEEE Trans. Cybern. 52 (2022) 1763–1771. [CrossRef] [PubMed] [Google Scholar]
  • S.L. Trojanski, On locally uniformly convex and differentiable norm in certain non-separable Banach spaces. Stud. Math. 37 (1971) 73–180. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.