Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 4, July-August 2024
Page(s) 3439 - 3467
DOI https://doi.org/10.1051/ro/2024067
Published online 02 September 2024
  • R. Lozano and D. Huisingh, Inter-linking issues and dimensions in sustainability reporting. J. Cleaner Prod. 19 (2011) 99–107. [CrossRef] [Google Scholar]
  • M.G. Luchs, R.W. Naylor, J.R. Irwin and R. Raghunathan, The sustainability liability: potential negative effects of ethicality on product preference. J. Marketing 74 (2010) 18–31. [CrossRef] [Google Scholar]
  • K. Salimifard and R. Raeesi, A green routing problem: optimising CO2 emissions and costs from a bi-fuel vehicle fleet. Int. J. Adv. Oper. Manage. 6 (2014) 27–57. [Google Scholar]
  • S.S. Yang, H.Y. Ngiam, S.K. Ong and A.Y.C. Nee, The impact of automotive product remanufacturing on environmental performance. Proc. Cirp 29 (2015) 774–779. [CrossRef] [Google Scholar]
  • Z. Liu, C. Diallo, J. Chen and M. Zhang, Optimal pricing and production strategies for new and remanufactured products under a non-renewing free replacement warranty. Int. J. Prod. Econ. 226 (2020) 107602. [CrossRef] [Google Scholar]
  • J. Cao, X. Chen, X. Zhang, Y. Gao, X. Zhang and S. Kumar, Overview of remanufacturing industry in China: government policies, enterprise, and public awareness. J. Cleaner Prod. 242 (2020) 118450. [CrossRef] [Google Scholar]
  • V. Ahuja and R. Terkar, Remanufacturing benefits: an analysis of recent trends in Indian context, in IOP Conference Series: Materials Science and Engineering. Vol. 810. IOP Publishing (2020) 012068. [Google Scholar]
  • A.A. Alamri, A sustainable closed-loop supply chains inventory model considering optimal number of remanufacturing times. Sustainability 15 (2023) 9517. [CrossRef] [Google Scholar]
  • B. Shen, Sustainable fashion supply chain: lessons from H&M. Sustainability 6 (2014) 6236–6249. [CrossRef] [Google Scholar]
  • B.F. Liao, B.Y. Li and J.S. Cheng, A warranty model for remanufactured products. J. Ind. Prod. Eng. 32 (2015) 551–558. [Google Scholar]
  • A. Kasman and Y.S. Duman, CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: a panel data analysis. Econ. Modell. 44 (2015) 97–103. [CrossRef] [Google Scholar]
  • Z. Jiang and S. Shao, Distributional effects of a carbon tax on Chinese households: a case of Shanghai. Energy Policy 73 (2014) 269–277. [CrossRef] [Google Scholar]
  • H.S.R. Chan, S. Li and F. Zhang, Firm competitiveness and the European Union emissions trading scheme. Energy Policy 63 (2013) 1056–1064. [CrossRef] [Google Scholar]
  • B.B. Wittneben, Exxon is right: let us re-examine our choice for a cap-and-trade system over a carbon tax. Energy Policy 37 (2009) 2462–2464. [CrossRef] [Google Scholar]
  • A. Choudhary, S. Sarkar, S. Settur and M.K. Tiwari, A carbon market sensitive optimization model for integrated forward–reverse logistics. Int. J. Prod. Econ. 164 (2015) 433–444. [CrossRef] [Google Scholar]
  • S.K. Das, M. Pervin, S.K. Roy and G.W. Weber, Multi-objective solid transportation-location problem with variable carbon emission in inventory management: a hybrid approach. Ann. Oper. Res. 324 (2023) 283–309. [CrossRef] [MathSciNet] [Google Scholar]
  • S.K. Das, S.K. Roy and G.W. Weber, The impact of carbon tax policy in a multi-objective green solid logistics modelling under sustainable development, in Computational Modelling in Industry 4.0: A Sustainable Resource Management Perspective. Springer Nature Singapore, Singapore (2022) 49–66. [Google Scholar]
  • M.J. Rosenblatt and H.L. Lee, Economic production cycles with imperfect production processes. IIE Trans. 18 (1986) 48–55. [Google Scholar]
  • D.A. Schrady, A deterministic inventory model for reparable items. Nav. Res. Logistics Q. 14 (1967) 391–398. [CrossRef] [Google Scholar]
  • A. Roy, K. Maity and M. Maiti, A production–inventory model with remanufacturing for defective and usable items in fuzzy-environment. Comput. Ind. Eng. 56 (2009) 87–96. [CrossRef] [Google Scholar]
  • A.M. El Saadany and M.Y. Jaber, A production/remanufacturing inventory model with price and quality dependent return rate. Comput. Ind. Eng. 58 (2010) 352–362. [CrossRef] [Google Scholar]
  • A.A. Alamri, Theory and methodology on the global optimal solution to a General Reverse Logistics Inventory Model for deteriorating items and time-varying rates. Comput. Ind. Eng. 60 (2011) 236–247. [CrossRef] [Google Scholar]
  • N. Kozlovskaya, N. Pakhomova and K. Richter, A note on “The EOQ repair and waste disposal model with switching costs”. Comput. Ind. Eng. 103 (2017) 310–315. [CrossRef] [Google Scholar]
  • E. Bazan, M.Y. Jaber and A.M. El Saadany, Carbon emissions and energy effects on manufacturing–remanufacturing inventory models. Comput. Ind. Eng. 88 (2015) 307–316. [CrossRef] [Google Scholar]
  • S. Karmakar, S.K. De and A. Goswami, A pollution sensitive remanufacturing model with waste items: triangular dense fuzzy lock set approach. J. Cleaner Prod. 187 (2018) 789–803. [CrossRef] [Google Scholar]
  • W.A. Jauhari, R.D. Septian, P.W. Laksono and A.R. Dwicahyani, A closed-loop supply chain inventory model considering limited number of remanufacturing generation and environmental investigation, in IOP Conference Series: Materials Science and Engineering. Vol. 943. IOP Publishing (2020) 012054. [Google Scholar]
  • S.R. Singh, S. Sharma and M. Kumar, A reverse logistics model for decaying items with variable production and remanufacturing incorporating learning effects. Int. J. Oper. Res. 38 (2020) 422–448. [Google Scholar]
  • A.A. Alamri, Exploring the effect of the first cycle on the economic production quantity repair and waste disposal model. Appl. Math. Modell. 89 (2021) 519–540. [CrossRef] [Google Scholar]
  • S. Sharma, S.R. Singh and M. Kumar, A reverse logistics inventory model with multiple production and remanufacturing batches under fuzzy environment. RAIRO-Oper. Res. 55 (2021) 571–588. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • A. Khakbaz and E.B. Tirkolaee, A sustainable hybrid manufacturing/remanufacturing system with two-way substitution and WEEE directive under different market conditions. Optimization 71 (2022) 3083–3106. [CrossRef] [MathSciNet] [Google Scholar]
  • S.K. Das, S.K. Roy and G.W. Weber, An exact and a heuristic approach for the transportation-p-facility location problem. Comput. Manage. Sci. 17 (2020) 389–407. [CrossRef] [Google Scholar]
  • S.K. Das and S.K. Roy, An approximation approach for fixed-charge transportation-p-facility location problem, in International Conference on Logistics and Supply Chain Management. Springer International Publishing, Cham (2020) 219–237. [Google Scholar]
  • M. Forkan, M.M. Rizvi and M.A.M. Chowdhury, Multi-objective reverse logistics model for inventory management with environmental impacts: an application in industry. Intell. Syst. App. 14 (2022) 200078. [Google Scholar]
  • Y. Bouchery, A. Ghaffari, Z. Jemai and Y. Dallery, Including sustainability criteria into inventory models. Eur. J. Oper. Res. 222 (2012) 229–240. [Google Scholar]
  • S. Saha, I. Nielsen and I. Moon, Optimal retailer investments in green operations and preservation technology for deteriorating items. J. Cleaner Prod. 140 (2017) 1514–1527. [CrossRef] [Google Scholar]
  • M.B. Jamali and M. Rasti-Barzoki, A game theoretic approach for green and non-green product pricing in chain-to-chain competitive sustainable and regular dual-channel supply chains. J. Cleaner Prod. 170 (2018) 1029–1043. [CrossRef] [Google Scholar]
  • T.K. Datta, P. Nath and K. Dutta Choudhury, A hybrid carbon policy inventory model with emission source-based green investments. Opsearch 57 (2020) 202–220. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Sepehri, U. Mishra and B. Sarkar, A sustainable production-inventory model with imperfect quality under preservation technology and quality improvement investment. J. Cleaner Prod. 310 (2021) 127332. [CrossRef] [Google Scholar]
  • A.H.M. Mashud, M. Pervin, U. Mishra, Y. Daryanto, M.L. Tseng and M.K. Lim, A sustainable inventory model with controllable carbon emissions in green-warehouse farms. J. Cleaner Prod. 298 (2021) 126777. [CrossRef] [Google Scholar]
  • L. Shaw, S.K. Das and S.K. Roy, Location-allocation problem for resource distribution under uncertainty in disaster relief operations. Soc.-Econ. Planning Sci. 82 (2022) 101232. [CrossRef] [Google Scholar]
  • S. Maheshwari, A. Kausar, A. Hasan and C.K. Jaggi, Sustainable inventory model for a three-layer supply chain using optimal waste management. Int. J. Syst. Assur. Eng. Manage. 14 (2023) 216–235. [CrossRef] [Google Scholar]
  • M. Pervin, S.K. Roy, P. Sannyashi and G.W. Weber, Sustainable inventory model with environmental impact for non-instantaneous deteriorating items with composite demand. RAIRO-Oper. Res. 57 (2023) 237–261. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • X. Chen, S. Benjaafar and A. Elomri, The carbon-constrained EOQ. Oper. Res. Lett. 41 (2013) 172–179. [CrossRef] [MathSciNet] [Google Scholar]
  • K. Cao, X. Xu, Q. Wu and Q. Zhang, Optimal production and carbon emission reduction level under cap-and-trade and low carbon subsidy policies. J. Cleaner Prod. 167 (2017) 505–513. [CrossRef] [Google Scholar]
  • T.K. Datta, Effect of green technology investment on a production-inventory system with carbon tax. Adv. Oper. Res. (2017). DOI: 10.1155/2017/4834839. [Google Scholar]
  • T.Y. Lin and B.R. Sarker, A pull system inventory model with carbon tax policies and imperfect quality items. Appl. Math. Modell. 50 (2017) 450–462. [CrossRef] [Google Scholar]
  • A.A. Taleizadeh, V.R. Soleymanfar and K. Govindan, Sustainable economic production quantity models for inventory systems with shortage. J. Cleaner Prod. 174 (2018) 1011–1020. [CrossRef] [Google Scholar]
  • S.K. Das and S.K. Roy, Effect of variable carbon emission in a multi-objective transportation-p-facility location problem under neutrosophic environment. Comput. Ind. Eng. 132 (2019) 311–324. [CrossRef] [Google Scholar]
  • U. Mishra, J.Z. Wu and B. Sarkar, A sustainable production-inventory model for a controllable carbon emissions rate under shortages. J. Cleaner Prod. 256 (2020) 120268. [CrossRef] [Google Scholar]
  • Q. Bai, M. Jin and X. Xu, Effects of carbon emission reduction on supply chain coordination with vendor-managed deteriorating product inventory. Int. J. Prod. Econ. 208 (2019) 83–99. [Google Scholar]
  • C. Yu, Z. Qu, T.W. Archibald and Z. Luan, An inventory model of a deteriorating product considering carbon emissions. Comput. Ind. Eng. 148 (2020) 106694. [CrossRef] [Google Scholar]
  • S.K. Das, S.K. Roy and G.W. Weber, Application of type-2 fuzzy logic to a multi objective green solid transportation–location problem with dwell time under carbon tax, cap, and offset policy: fuzzy versus nonfuzzy techniques. IEEE Trans. Fuzzy Syst. 28 (2020) 2711–2725. [CrossRef] [Google Scholar]
  • J. Pan, C.Y. Chiu, K.S. Wu, H.F. Yen and Y.W. Wang, Sustainable production-inventory model in technical cooperation on investment to reduce carbon emissions. Processes 8 (2020) 1438. [CrossRef] [Google Scholar]
  • S. Ruidas, M.R. Seikh and P.K. Nayak, A production inventory model with interval-valued carbon emission parameters under price-sensitive demand. Comput. Ind. Eng. 154 (2021) 107154. [CrossRef] [Google Scholar]
  • S. Ghosh, K.H. Küfer, S.K. Roy and G.W. Weber, Carbon mechanism on sustainable multi-objective solid transportation problem for waste management in Pythagorean hesitant fuzzy environment. Complex Intell. Syst. 8 (2022) 4115–4143. [CrossRef] [Google Scholar]
  • E.L. Porteus, Optimal lot sizing, process quality improvement and setup cost reduction. Oper. Res. 34 (1986) 137–144. [Google Scholar]
  • B. Sarkar, An inventory model with reliability in an imperfect production process. Appl. Math. Comput. 218 (2012) 4881–4891. [Google Scholar]
  • A.K. Manna, J.K. Dey and S.K. Mondal, Imperfect production inventory model with production rate dependent defective rate and advertisement dependent demand. Comput. Ind. Eng. 104 (2017) 9–22. [Google Scholar]
  • S. Tiwari, Y. Daryanto and H.M. Wee, Sustainable inventory management with deteriorating and imperfect quality items considering carbon emission. J. Cleaner Prod. 192 (2018) 281–292. [Google Scholar]
  • K. Patra, A production inventory model with imperfect production and risk. Int. J. Appl. Comput. Math. 4 (2018) 91. [CrossRef] [Google Scholar]
  • M. Sanjai and S. Periyasamy, An inventory model for imperfect production system with rework and shortages. Int. J. Oper. Res. 34 (2019) 66–84. [CrossRef] [MathSciNet] [Google Scholar]
  • A.K. Manna, B. Das and S. Tiwari, Impact of carbon emission on imperfect production inventory system with advance payment base free transportation. RAIRO-Oper. Res. 54 (2020) 1103–1117. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • R.H. Su, M.W. Weng, C.T. Yang and H.T. Li, An imperfect production–inventory model with mixed materials containing scrap returns based on a circular economy. Processes 9 (2021) 1275. [CrossRef] [Google Scholar]
  • M.G. Alharbi, Carbon reduction technology based on imperfect production system for deteriorating items with warranty periods and greenness dependent demand. Sustainability 14 (2022) 15061. [CrossRef] [Google Scholar]
  • R. Chaudhary, M. Mittal and M.K. Jayaswal, A sustainable inventory model for defective items under fuzzy environment. Decis. Anal. J. 7 (2023) 100207. [CrossRef] [Google Scholar]
  • V. Hovelaque and L. Bironneau, The carbon-constrained EOQ model with carbon emission dependent demand. Int. J. Prod. Econ. 164 (2015) 285–291. [Google Scholar]
  • D. Ghosh and J. Shah, Supply chain analysis under green sensitive consumer demand and cost sharing contract. Int. J. Prod. Econ. 164 (2015) 319–329. [Google Scholar]
  • J. Jian, Y. Guo, L. Jiang, Y. An and J. Su, A multi-objective optimization model for green supply chain considering environmental benefits. Sustainability 11 (2019) 5911. [CrossRef] [Google Scholar]
  • A.H.M. Mashud, D. Roy, Y. Daryanto and M.H. Ali, A sustainable inventory model with imperfect products, deterioration, and controllable emissions. Mathematics 8 (2020) 2049. [CrossRef] [Google Scholar]
  • C. Mondal and B.C. Giri, Pricing and used product collection strategies in a two-period closed-loop supply chain under greening level and effort dependent demand. J. Cleaner Prod. 265 (2020) 121335. [CrossRef] [Google Scholar]
  • R. Maihami, I. Ghalehkhondabi and E. Ahmadi, Pricing and inventory planning for non-instantaneous deteriorating products with greening investment: a case study in beef industry. J. Cleaner Prod. 295 (2021) 126368. [CrossRef] [Google Scholar]
  • A. Paul, M. Pervin, S.K. Roy, N. Maculan and G.W. Weber, A green inventory model with the effect of carbon taxation. Ann. Oper. Res. 309 (2022) 233–248. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Khakbaz and E.B. Tirkolaee, A mathematical model to investigate the interactive effects of important economic factors on the behaviors of retailers. Ann. Oper. Res. (2022) 1–25. DOI: 10.1007/s10479-022-05116-1. [Google Scholar]
  • M. Abdul Hakim, I.M. Hezam, A.F. Alrasheedi and J. Gwak, Pricing policy in an inventory model with green level dependent demand for a deteriorating item. Sustainability 14 (2022) 4646. [CrossRef] [Google Scholar]
  • A. Khakbaz, W. Mensi, E.B. Tirkolaee, S. Hammoudeh and V. Simic, The combined effects of interest and inflation rates on inventory systems: a comparative analysis across countries. Int. J. Prod. Econ. 266 (2023) 109035. [CrossRef] [Google Scholar]
  • H. Barman, M. Pervin and S.K. Roy, Impacts of green and preservation technology investments on a sustainable EPQ model during COVID-19 pandemic. RAIRO-Oper. Res. 56 (2022) 2245–2275. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • H. Barman, M. Pervin, S.K. Roy and G.W. Weber, Analysis of a dual-channel green supply chain game-theoretical model under carbon policy. Int. J. Syst. Sci.: Oper. Logistics 10 (2023) 2242770. [Google Scholar]
  • A.F. Momena, R. Haque, M. Rahaman and S.P. Mondal, A two-storage inventory model with trade credit policy and time-varying holding cost under quantity discounts. Logistics 7 (2023) 77. [CrossRef] [Google Scholar]
  • M. Pervin, S.K. Roy and G.W. Weber, An integrated vendor-buyer model with quadratic demand under inspection policy and preservation technology. Hacettepe J. Math. Stat. 49 (2020) 1169–1189. [Google Scholar]
  • A.F. Momena, M. Rahaman, R. Haque, S. Alam and S.P. Mondal, A learning-based optimal decision scenario for an inventory problem under a price discount policy. Systems 11 (2023) 235. [CrossRef] [Google Scholar]
  • M. Rahaman, R. Haque, S. Alam, S. Zupok, S. Salahshour, F. Azizzadeh and S.P. Mondal, Solvability criteria for uncertain differential equations and their applicability in an economic lot-size model with a type-2 interval phenomenon. Symmetry 15 (2023) 1883. [CrossRef] [Google Scholar]
  • M.L. Tseng, T.D. Bui, S. Lan, M.K. Lim and A.H.M. Mashud, Smart product service system hierarchical model in banking industry under uncertainties. Int. J. Prod. Econ. (2021). DOI: 10.1016/j.ijpe.2021.108244. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.