Open Access
Issue |
RAIRO-Oper. Res.
Volume 58, Number 5, September-October 2024
|
|
---|---|---|
Page(s) | 4221 - 4234 | |
DOI | https://doi.org/10.1051/ro/2024166 | |
Published online | 14 October 2024 |
- M.A. Hanson, On sufficiency of the Kuhn–Tucker conditions. Math. Anal. Appl. 80 (1981) 545–550. [CrossRef] [MathSciNet] [Google Scholar]
- B.D. Craven, Invex functions and constrained local minimax. Aust. Math. Soc. J. 28 (1986) 1–9. [Google Scholar]
- A. Ben-Israel and B. Mond, What is invexity? Bull. Aust. Math. Soc. 24 (1981) 357–366. [CrossRef] [Google Scholar]
- J.C. Liu and C.S. Wu, On minimax fractional optimality conditions and (F, ρ)-convexity. J. Math. Anal. Appl. 219 (1998) 36–51. [CrossRef] [MathSciNet] [Google Scholar]
- J.C. Liu, C.S. Wu and R.L. Sheu, Duality for fractional minimax programming. J. Optim. 41 (2010) 117–133. [Google Scholar]
- X.M. Yang and S.H. Hou, On minimax fractional optimality conditions and duality with generalized convexity. J. Glob. Optim. 31 (2005) 235–252. [CrossRef] [Google Scholar]
- S.K. Mishra, S.Y. Wang, K.K. Lai and J.M. Shi, Nondifferentiable minimax fractional programming under generalized univexity. J. Comput. Appl. Math. 158 (2003) 379–395. [CrossRef] [MathSciNet] [Google Scholar]
- S.K. Mishra and N.G. Rueda, Second-order duality for nondifferentiable minimax programming involving generalized type I functions. J. Optim. Theory Appl. 130 (2006) 479–488. [CrossRef] [Google Scholar]
- S.K. Mishra, R.P. Pant and J.S. Rautelaa, Generalized α-invexity and nondifferentiable minimax fractional programming. J. Comput. Appl. Math. 206 (2007) 122–135. [CrossRef] [MathSciNet] [Google Scholar]
- S.K. Mishra, R.P. Pan and J.S. Rautela, Generalized α-univexity and duality for nondifferentiable minimax fractional programming. J. Nonlinear Anal. Theory Methods Appl. 70 (2009) 144–158. [CrossRef] [Google Scholar]
- S.K. Mishra, S.Y. Wang and K.K. Lai, Complex minimax programming under generalized convexity. J. Comput. Appl. Math. 167 (2004) 57–71. [Google Scholar]
- S.K. Mishra, Y. Singh and R.U. Verma, Saddle point criteria in nonsmooth semi-infinite minimax fractional programming problems. J. Syst. Sci. Complex. 31 (2018) 446–462. [CrossRef] [MathSciNet] [Google Scholar]
- S.K. Mishra, K.K. Lai and V. Singh, Optimality and duality for minimax fractional programming with support function under (C, α, ρ, d)-convexity. J. Comput. Appl. Math. 274 (2015) 1–10. [CrossRef] [MathSciNet] [Google Scholar]
- S.K. Mishra and B.B. Upadhyay, Nonsmooth minimax fractional programming involving η-pseudolinear functions. J. Optim. 63 (2014) 775–788. [CrossRef] [Google Scholar]
- S.K. Mishra and K. Shukla, Nonsmooth minimax programming problems with V − r-invex functions. J. Optim. 59 (2010) 95–103. [CrossRef] [Google Scholar]
- B.B. Upadhyay and S.K. Mishra, Nonsmooth semi-infinite minmax programming involving generalized (Φ, ρ)-invexity. J. Syst. Sci. Complex. 28 (2015) 857–875. [CrossRef] [MathSciNet] [Google Scholar]
- S.K. Mishra, Generalized pseudo convex minmax programming. J. Opsearch 35 (1998) 32–44. [CrossRef] [Google Scholar]
- S.K. Mishra, Pseudoconvex complex minimax programming. Indian J. Pure Appl. Math. 32 (2001) 205–214. [MathSciNet] [Google Scholar]
- S.K. Mishra and J.S. Rautela, On nondifferentiable minimax fractional programming under generalized α-type I invexity. J. Appl. Math. Comput. 31 (2009) 317–334. [CrossRef] [MathSciNet] [Google Scholar]
- S.K. Mishra and R.N. Mukherjee, Constrained vector valued ratio games and generalized subdifferentiable multiobjective fractional minmax programming. J. Opsearch 34 (1997) 1–15. [CrossRef] [Google Scholar]
- T. Antczak, New optimality conditions and duality results of G type in differentiable mathematical programming. J. Nonlinear Anal. Theory Methods Appl. 66 (2007) 1617–1632. [CrossRef] [Google Scholar]
- T. Antczak, On G-invex multiobjective programming. Part I. Optimality. J. Glob. Optim. 43 (2009) 97–109. [CrossRef] [Google Scholar]
- T. Antczak, On G-invex multiobjective programming. Part II. Duality. J. Glob. Optim. 43 (2009) 111–140. [CrossRef] [Google Scholar]
- T. Antczak, Multiobjective programming under nondifferentiable G − V invexity. J. Filomat. 30 (2016) 2909–2923. [CrossRef] [Google Scholar]
- D.H. Yuan and X.K. Liu, Generalized minimax programming with nondifferentiable (G, β)-invexity. J. Appl. Math. 2013 (2013) 854125. [Google Scholar]
- D.H. Yuan and X.K. Liu, Minimax fractional programming with nondifferentiable (G, β)-invexity. J. Filomate 28 (2014) 2027–2035. [CrossRef] [Google Scholar]
- F. Clarke, Optimization and nonsmooth analysis. J. Appl. Math. 65 (1983) 90–95. [Google Scholar]
- B.B. Upadhyay, T. Antczak, S.K. Mishra and K. Shukla, Nondifferentiable generalized minimax fractional programming under (ø, ρ)-invexity. Yugoslav J. Oper. Res. 32 (2021) 3–27. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.