Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 5, September-October 2024
Page(s) 4553 - 4574
DOI https://doi.org/10.1051/ro/2024165
Published online 21 October 2024
  • M.S. Bazaraa and J.J. Goode, On symmetric duality in nonlinear programming. Oper. Res. 21 (1973) 1–9. [CrossRef] [Google Scholar]
  • C.R. Bector and I. Husain, Duality for multiobjective variational problems. J. Math. Anal. Appl. 166 (1992) 214–229. [CrossRef] [MathSciNet] [Google Scholar]
  • C.R. Bector, S. Chandra and I. Husain, Generalized concavity and duality in continuous programming. Util. Math. 25 (1984) 171–190. [Google Scholar]
  • A. Chinchuluun, A. Migdalas, P.M. Pardalos and L. Pitsoulis, Pareto Optimality, Game Theory and Equilibria. Springer, New York (2008). [CrossRef] [Google Scholar]
  • G. Dantzig, E. Eisenberg and R. Cottle, Symmetric dual nonlinear programs. Pac. J. Math. 15 (1965) 809–812. [CrossRef] [Google Scholar]
  • W. Dorn, A symmetric dual theorem for quadratic programs. J Oper. Res. Soc. Jpn. 2 (1960) 8. [Google Scholar]
  • R. Dubey and V.N. Mishra, Symmetric duality results for second-order nondifferentiable multiobjective programming problem. RAIRO:OR 53 (2019) 539–558. [CrossRef] [EDP Sciences] [Google Scholar]
  • R. Dubey and L.N. Mishra, Nondierentiable multiobjective higher-order duality relations for unified type dual models under Type-I functions. Adv. Stud. Contemp. Math. 29 (2019) 373–382. [Google Scholar]
  • R. Dubey and V.N. Mishra, Nondifferentiable higher-order duality theorems for new type of dual model under generalized functions. Proyecciones (Antofagasta) 39 (2020) 15–29. [CrossRef] [Google Scholar]
  • R. Dubey, L.N. Mishra and C. Cesarano, Multiobjective fractional symmetric duality in mathematical programming with (C, Gf)-invexity assumptions. Axioms 97 (2019) 8. [Google Scholar]
  • R. Dubey, V.N. Mishra and R. Ali, Duality for unified higher-order minimax fractional programming with support function under Type-I assumptions. Mathematics 7 (2019) 1034. [CrossRef] [Google Scholar]
  • R. Dubey, A. Kumar, R. Ali and L.N. Mishra, New class of G-Wolfe-type symmetric duality model and duality relations under Gf -bonvexity over arbitrary cones. J. Inequal. Appl. 1 (2020) 30. [CrossRef] [Google Scholar]
  • T.R. Gulati and G. Mehndiratta, Optimality and duality for second-order multiobjective variational problems. Eur. J. Pure Appl. Math. 3 (2010) 786–805. [MathSciNet] [Google Scholar]
  • I. Husain and S.K. Shrivastav, On second-order duality in nondifferentiable continuous programming. Am. J. Oper. Res. 2 (2012) 289–295. [Google Scholar]
  • A. Jayswal and S. Jha, Second order symmetric duality in fractional variational problems over cone constraints. Yugosl. J. Oper. Res. 28 (2018) 39–57. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Jayswal, I. Stancu-Minasian and S. Choudhury, Second order duality for variational problems involving generalized convexity. Opsearch 52 (2014) 582–596. [Google Scholar]
  • A. Jayswal, S. Singh and A. Kurdi, Multitime multiobjective variational problems and vector variational-like inequalities. Eur. J. Oper. Res. 254 (2016) 739–745. [CrossRef] [Google Scholar]
  • Y.M. Kang, D.S. Kim and M.H. Kim, Symmetric duality for nondifferentiable multiobjective fractional variational problems involving cones. J. Inequal. Appl. 434 (2013) 1–15. [Google Scholar]
  • P. Kumar and B. Sharma, (F, ρ)-invexity of higher order for multiobjective fractional variational problem. Control Cybern. 47 (2018). [Google Scholar]
  • S.K. Mishra and R.N. Mukherjee, Duality for multiobjective fractional variational problems. J. Math. Anal. Appl. 186 (1994) 711–725. [CrossRef] [MathSciNet] [Google Scholar]
  • S.K. Mishra, S.Y. Wang and K.K. Lai, Symmetric duality for a class of nondifferentiable multi-objective fractional variational problems. J. Math. Anal. Appl. 333 (2007) 1093–1110. [CrossRef] [MathSciNet] [Google Scholar]
  • B. Mond and M.A. Hanson, Duality for variational problems. J. Math. Anal. Appl. 18 (1967) 355–364. [Google Scholar]
  • M. Oveisiha and J. Zafarani, Vector optimization problem and generalized convex. J. Glob. Optim. 52 (2012) 29–43. [CrossRef] [Google Scholar]
  • S.K. Padhan, Duality of variational problems with a new approach. RAIRO:OR 52 (2018) 79–93. [CrossRef] [EDP Sciences] [Google Scholar]
  • A. Prasad, A. Singh and S. Khatri, Duality for a class of second order symmetric nondifferentiable fractional variational problems. Yugosl. J. Oper. Res. 30 (2020) 121–136. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Sachdev, K. Verma and T.R. Gulati, Second-order symmetric duality in multiobjective variational problems. Yugosl. J. Oper. Res. 29 (2019) 295–308. [CrossRef] [MathSciNet] [Google Scholar]
  • B. Sharma, Duality for non-differentiable multi-objective fractional variational problem. J. Math. Exten. 11 (2017) 45–70. [Google Scholar]
  • I. Smart and B. Mond, Symmetric duality with invexity in variational problems. J. Math. Anal. Appl. 152 (1990) 536–545. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.