Open Access
Issue |
RAIRO-Oper. Res.
Volume 58, Number 5, September-October 2024
|
|
---|---|---|
Page(s) | 3871 - 3893 | |
DOI | https://doi.org/10.1051/ro/2024080 | |
Published online | 24 September 2024 |
- Q. An, P. Wang and S. Shi, Fixed cost allocation for two-stage systems with cooperative relationship using data envelopment analysis. Comput. Ind. Eng. 145 (2020) 106534. [CrossRef] [Google Scholar]
- Q. An, P. Wang, H. Yang and Z. Wang, Fixed cost allocation in two-stage system using DEA from a noncooperative view. OR Spectr. 43 (2021) 1077–1102. [CrossRef] [Google Scholar]
- P. Andersen and N.C. Petersen, A procedure for ranking efficient units in data envelopment analysis. Manage. Sci. 39 (1993) 1261–1264. [Google Scholar]
- R.D. Banker, A. Charnes and W.W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manage. Sci. 30 (1984) 1078–1092. [Google Scholar]
- J.E. Beasley, Allocating fixed costs and resources via data envelopment analysis. Eur. J. Oper. Res. 147 (2003) 198–216. [Google Scholar]
- L. Castelli, R. Pesenti and W. Ukovich, A classification of DEA models when the internal structure of the decision making units is considered. Ann. Oper. Res. 173 (2010) 207–235. [CrossRef] [MathSciNet] [Google Scholar]
- A. Charnes and W.W. Cooper, Programming with linear fractional functionals. Nav. Res. Logist. Q. 9 (1962) 181–186. [CrossRef] [Google Scholar]
- A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
- Y. Chen, W.D. Cook, N. Li and J. Zhu, Additive efficiency decomposition in two-stage DEA. Eur. J. Oper. Res. 196 (2009) 1170–1176. [Google Scholar]
- Y. Chen, L. Liang and J. Zhu, Equivalence in two-stage DEA approaches. Eur. J. Oper. Res. 193 (2009) 600–604. [CrossRef] [Google Scholar]
- J. Chu, J. Wu, C. Chu and T. Zhang, DEA-based fixed cost allocation in two-stage systems: leader-follower and satisfaction degree bargaining game approaches. Omega 94 (2020) 102054. [CrossRef] [Google Scholar]
- J. Chu, Y. Dong and F. Wei, Efficiency improvement and balance in fixed cost allocation: A trade-off approach based on DEA. Comput. Ind. Eng. 183 (2023) 109527. [CrossRef] [Google Scholar]
- J. Chu, W. Su, F. Li and Z. Yuan, Individual rationality and overall fairness in fixed cost allocation: an approach under DEA cross-efficiency evaluation mechanism. J. Oper. Res. Soc. 74 (2023) 992–1007. [CrossRef] [MathSciNet] [Google Scholar]
- J. Chu, W. Su, J. Wu and Z. Yuan, DEA-based proportional-sharing fixed cost allocation considering bi-objective optimization. OR Spectr. (2023) 1–28. [Google Scholar]
- C.S. Cinca and C.M. Molinero, Selecting DEA specifications and ranking units via PCA. J. Oper. Res. Soc. 55 (2004) 521–528. [CrossRef] [Google Scholar]
- W.D. Cook and M. Kress, Characterizing an equitable allocation of shared costs: a DEA approach. Eur. J. Oper. Res. 119 (1999) 652–661. [Google Scholar]
- W.D. Cook and J. Zhu, Allocation of shared costs among decision making units: a DEA approach. Comput. Oper. Res. 32 (2005) 2171–2178. [Google Scholar]
- W.D. Cook, L. Liang, Y. Zha and J. Zhu, A modified super-efficiency DEA model for infeasibility. J. Oper. Res. Soc. 60 (2009) 276–281. [CrossRef] [Google Scholar]
- W.D. Cook, L. Liang and J. Zhu, Measuring performance of two-stage network structures by DEA: a review and future perspective. Omega 38 (2010) 423–430. [Google Scholar]
- Q. Dai, Y. Li and L. Liang, Allocating fixed costs with considering the return to scale: a DEA approach. J. Syst. Sci. Complex. 29 (2016) 1320–1341. [CrossRef] [MathSciNet] [Google Scholar]
- Q. Dai, Y. Li, X. Lei and D. Wu, A DEA-based incentive approach for allocating common revenues or fixed costs. Eur. J. Oper. Res. 292 (2021) 675–686. [CrossRef] [Google Scholar]
- T. Ding, Q. Zhu, B. Zhang and L. Liang, Centralized fixed cost allocation for generalized two-stage network DEA. INFOR: Inf. Syst. Oper. Res. 57 (2019) 123–140. [MathSciNet] [Google Scholar]
- J. Du, L. Liang, Y. Chen, W.D. Cook and J. Zhu, A bargaining game model for measuring performance of two-stage network structures. Eur. J. Oper. Res. 210 (2011) 390–397. [Google Scholar]
- J. Du, W.D. Cook, L. Liang and J. Zhu, Fixed cost and resource allocation based on DEA cross-efficiency. Eur. J. Oper. Res. 235 (2014) 206–214. [CrossRef] [Google Scholar]
- A. Emrouznejad and G. Yang, A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Soc.-Econ. Plan. Sci. 61 (2018) 4–8. [CrossRef] [Google Scholar]
- F. Feng, B. Wang, Y. Zou and Y. Du, A new Internet DEA structure: Measurement of Chinese R&D innovation efficiency in high technology industry. Int. J. Bus. Manage. 8 (2013) 32. [Google Scholar]
- H. Fukuyama and R. Matousek, Modelling bank performance: a network DEA approach. Eur. J. Oper. Res. 259 (2017) 721–732. [CrossRef] [Google Scholar]
- C. Han, S.R. Thomas, M. Yang, P. Ieromonachou and H. Zhang, Evaluating R&D investment efficiency in China’s high-tech industry. J. High. Technol. Manage. Res. 28 (2017) 93–109. [CrossRef] [Google Scholar]
- G.R. Jahanshahloo, F.H. Lotfi, N. Shoja and M. Sanei, An alternative approach for equitable allocation of shared costs by using DEA. Appl. Math. Comput. 153 (2004) 267–274. [Google Scholar]
- G.R. Jahanshahloo, J. Sadeghi and M. Khodabakhshi, Proposing a method for fixed cost allocation using DEA based on the efficiency invariance and common set of weights principles. Math. Methods Oper. Res. 85 (2017) 223–240. [CrossRef] [MathSciNet] [Google Scholar]
- L. Jenkins and M. Anderson, A multivariate statistical approach to reducing the number of variables in data envelopment analysis. Eur. J. Oper. Res. 147 (2003) 51–61. [CrossRef] [Google Scholar]
- C. Kao, Network data envelopment analysis: a review. Eur. J. Oper. Res. 239 (2014) 1–16. [Google Scholar]
- C. Kao and S.N. Hwang, Efficiency decomposition in two-stage data envelopment analysis: an application to non-life insurance companies in Taiwan. Eur. J. Oper. Res. 185 (2008) 418–429. [Google Scholar]
- M. Khodabakhshi and K. Aryavash, The fair allocation of common fixed cost or revenue using DEA concept. Ann. Oper. Res. 214 (2014) 187–194. [Google Scholar]
- Y. Li, F. Yang, L. Liang and Z. Hua, Allocating the fixed cost as a complement of other cost inputs: A DEA approach. Eur. J. Oper. Res. 197 (2009) 389–401. [CrossRef] [Google Scholar]
- Y. Li, Y. Chen, L. Liang and J. Xie, DEA models for extended two-stage network structures. Omega 40 (2012) 611–618. [CrossRef] [Google Scholar]
- Y. Li, M. Yang, Y. Chen, Q. Dai and L. Liang, Allocating a fixed cost based on data envelopment analysis and satisfaction degree. Omega 41 (2013) 55–60. [CrossRef] [Google Scholar]
- Y. Li, X. Lei, Q. Dai and L. Liang, Performance evaluation of participating nations at the 2012 London Summer Olympics by a two-stage data envelopment analysis. Eur. J. Oper. Res. 243 (2015) 964–973. [CrossRef] [Google Scholar]
- F. Li, J. Song, A. Dolgui and L. Liang, Using common weights and efficiency invariance principles for resource allocation and target setting. Int. J. Prod. Res. 55 (2017) 4982–4997. [CrossRef] [Google Scholar]
- F. Li, Q. Zhu and Z. Chen, Allocating a fixed cost across the decision making units with two-stage network structures. Omega 83 (2019) 139–154. [CrossRef] [Google Scholar]
- F. Li, Q. Zhu and L. Liang, A new data envelopment analysis based approach for fixed cost allocation. Ann. Oper. Res. 274 (2019) 347–372. [CrossRef] [MathSciNet] [Google Scholar]
- F. Li, Z. Yan, Q. Zhu, M. Yin and G. Kou, Allocating a fixed cost across decision making units with explicitly considering efficiency rankings. J. Oper. Res. Soc. 72 (2021) 1432–1446. [CrossRef] [Google Scholar]
- F. Li, Y. Wang, A. Emrouznejad, Q. Zhu and G. Kou, Allocating a fixed cost across decision-making units with undesirable outputs: A bargaining game approach. J. Oper. Res. Soc. 73 (2022) 2309–2325. [CrossRef] [Google Scholar]
- L. Liang, J. Wu, W.D. Cook and J. Zhu, The DEA game cross-efficiency model and its Nash equilibrium. Oper. Res. 56 (2008) 1278–1288. [CrossRef] [MathSciNet] [Google Scholar]
- R. Lin, Allocating fixed costs or resources and setting targets via data envelopment analysis. Appl. Math. Comput. 217 (2011) 6349–6358. [Google Scholar]
- R. Lin and Z. Chen, Fixed input allocation methods based on super CCR efficiency invariance and practical feasibility. Appl. Math. Model. 40 (2016) 5377–5392. [CrossRef] [MathSciNet] [Google Scholar]
- R. Lin and Y. Liu, Super-efficiency based on the directional distance function in the presence of negative data. Omega 85 (2019) 26–34. [CrossRef] [Google Scholar]
- R. Lin and Z. Chen, A DEA-based method of allocating the fixed cost as a complement to the original input. Int. Trans. Oper. Res. 27 (2020) 2230–2250. [CrossRef] [MathSciNet] [Google Scholar]
- S. Lozano, Information sharing in DEA: a cooperative game theory approach. Eur. J. Oper. Res. 222 (2012) 558–565. [CrossRef] [Google Scholar]
- A. Mostafaee, An equitable method for allocating fixed costs by using data envelopment analysis. J. Oper. Res. Soc. 64 (2013) 326–335. [CrossRef] [Google Scholar]
- S.V. Nagaraj, Optimal binary search trees. Theor. Comput. Sci. 188 (1997) 1–44. [CrossRef] [Google Scholar]
- L.M. Seiford and J. Zhu, Infeasibility of super-efficiency data envelopment analysis models. INFOR: Inf. Syst. Oper. Res. 37 (1999) 174–187. [Google Scholar]
- X. Si, L. Liang, G. Jia, L. Yang, H. Wu and Y. Li, Proportional sharing and DEA in allocating the fixed cost. Appl. Math. Comput. 219 (2013) 6580–6590. [MathSciNet] [Google Scholar]
- F. Wei, Y. Fu, F. Yang, C. Sun and S. Ang, Closest target setting with minimum improvement costs considering demand and resource mismatches. Oper. Res. Int. J. 23 (2023) 42. [CrossRef] [Google Scholar]
- J. Wu, Q. Zhu, X. Ji, J. Chu and L. Liang, Two-stage network processes with shared resources and resources recovered from undesirable outputs. Eur. J. Oper. Res. 251 (2016) 182–197. [CrossRef] [Google Scholar]
- G. Xu, J. Wu and Q. Zhu, Fixed cost allocation in two-stage system: a data-driven approach from the perspective of fairness concern. Comput. Ind. Eng. 173 (2022) 108647. [CrossRef] [Google Scholar]
- G. Xu, J. Wu, Q. Zhu, and Y. Pan, Fixed cost allocation based on data envelopment analysis from inequality aversion perspectives. Eur. J. Oper. Res. 313 (2024) 281–295. [CrossRef] [Google Scholar]
- A.H. Yadolladi and R.K. Matin, Centralized resource allocation with the possibility of downsizing in two-stage network production systems. RAIRO:RO 55 (2021) 2583–2598. [CrossRef] [EDP Sciences] [Google Scholar]
- J. Yang, D. Li and Y. Li, A generalized data envelopment analysis approach for fixed cost allocation with preference information. Omega 122 (2024) 102948. [CrossRef] [Google Scholar]
- P. Yin, J. Chu, J. Wu, J. Ding, M. Yang and Y. Wang, A DEA-based two-stage network approach for hotel performance analysis: an internal cooperation perspective. Omega 93 (2020) 102035. [CrossRef] [Google Scholar]
- M.M. Yu, L.H. Chen and B. Hsiao, A fixed cost allocation based on the two-stage network data envelopment approach. J. Bus. Res. 69 (2016) 1817–1822. [CrossRef] [MathSciNet] [Google Scholar]
- L. Zhang and K. Chen, Hierarchical network systems: an application to high-technology industry in China. Omega 82 (2019) 118–131. [CrossRef] [Google Scholar]
- T. Zhao, J. Xie, Y. Chen and L. Liang, Coordination efficiency for general two-stage network system. RAIRO:RO 56 (2022) 3801–3815. [CrossRef] [EDP Sciences] [Google Scholar]
- J. Zhu, Robustness of the efficient DMUs in data envelopment analysis. Eur. J. Oper. Res. 90 (1996) 451–460. [CrossRef] [Google Scholar]
- W. Zhu, Q. Zhang and H. Wang, Fixed costs and shared resources allocation in two-stage network DEA. Ann. Oper. Res. 278 (2019) 177–194. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.