Open Access
Issue |
RAIRO-Oper. Res.
Volume 58, Number 5, September-October 2024
|
|
---|---|---|
Page(s) | 4651 - 4680 | |
DOI | https://doi.org/10.1051/ro/2024177 | |
Published online | 30 October 2024 |
- N. Aghayi and B. Maleki, Corrigendum to efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry. Energy 153 (2018) 476–478. [CrossRef] [Google Scholar]
- N. Aghayi, M. Tavana and B. Maleki, A Malmquist productivity index with the directional distance function and uncertain data. Sci. Iran. 26 (2019) 3819–3834. [Google Scholar]
- A.I. Ali and L. M. Seiford, Translation-invariance in data envelopment analysis. Oper. Res. Lett. 9 (1990) 403–405. [CrossRef] [Google Scholar]
- A. Amiri, S. Saati and A. Amirteimoori, Determining a common set of weights in data envelopment analysis by bootstrap. Math. Sci. 14 (2020) 335–344. [CrossRef] [MathSciNet] [Google Scholar]
- A. Amirteimoori, T. Allahviranloo, S. Kordrostami and S.F. Bagheri, Improving decision-making units in performance analysis methods: A data envelopment analysis approach. Math. Sci. (2023) 1–11. [Google Scholar]
- A. Arya and S.P. Yadav, Development of intuitionistic fuzzy data envelopment analysis models and intuitionistic fuzzy input-output targets. Soft Comput. 23 (2019) 8975–8993. [CrossRef] [Google Scholar]
- N. Aydin and M. Zortuk, Measuring efficiency of foreign direct investment in selected transition economies with fuzzy data envelopment analysis. Econ. Comput. Econ. Cybern. Stud. Res. 48 (2014) 273–286. [Google Scholar]
- H. Azizi, A. Amirteimoori and S. Kordrostami, A note on dual models of interval DEA and its extension to interval data. Int. J. Ind. Math. 10 (2018) 115–130. [Google Scholar]
- P. Bangarwa and S. Roy, Operational performance model for banks: A dynamic data envelopment approach. Benchmark. Int. J. 30 (2023) 3817–3836. [CrossRef] [Google Scholar]
- R.D. Banker, A. Charnes and W.W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manage. Sci. 30 (1984) 1078–1092. [Google Scholar]
- P. Bansal and A. Mehra, Integrated dynamic interval data envelopment analysis in the presence of integer and negative data. J. Ind. Manag. Optim. 18 (2021) 1339–1363. [Google Scholar]
- P. Bansal, A. Mehra and S. Kumar, Dynamic metafrontier Malmquist-Luenberger productivity index in network DEA: An application to banking data. Comput. Econ. (2021) 1–28. [Google Scholar]
- P.W. Bauer, A.N. Berger, G.D. Ferrier and D.B. Humphrey, Consistency conditions for regulatory analysis of financial institutions: A comparison of frontier efficiency methods. J. Bus. Econ. 50 (1998) 85–114. [CrossRef] [Google Scholar]
- A.N. Berger and D.B. Humphrey, Efficiency of financial institutions: International survey and directions for future research. Eur. J. Oper. Res. 98 (1997) 175–212. [CrossRef] [Google Scholar]
- T.S. Chang, K. Tone and C.H. Wu, Past-present-future Intertemporal DEA models. J. Oper. Res. Soc. 66 (2015) 16–32. [CrossRef] [Google Scholar]
- A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
- W.D. Cook and L.M. Seiford, Data envelopment analysis (DEA) - thirty years on. Eur. J. Oper. Res. 192 (2009) 1–17. [CrossRef] [Google Scholar]
- W.W. Cooper, K.S. Park and G. Yu, IDEA and AR-IDEA: Models for dealing with imprecise data in DEA. Manag. Sci. 45 (1999) 597–607. [CrossRef] [Google Scholar]
- W.W. Cooper, L.M. Seiford and K. Tone, Data Envelopment Analysis: A Comprehensive Text With Models, Applications, References and DEA-Solver Software, 2nd edition. Springer, New York (2007). [Google Scholar]
- J.H. Dahooie, S.H.R. Hajiagha, S. Farazmehr, E.K. Zavadskas and J. Antucheviciene, A novel dynamic credit risk evaluation method using data envelopment analysis with common weights and combination of multi-attribute decision-making methods. Comput. Oper. Res. 129 (2021) 105223. [CrossRef] [Google Scholar]
- D.K. Despotis and Y.G. Smirlis, Data envelopment analysis with imprecise data. Eur. J. Oper. Res. 140 (2002) 24–36. [Google Scholar]
- A. Emrouznejad and E. Thanassoulis, A mathematical model for dynamic efficiency using data envelopment analysis. Appl. Math. Comput. 160 (2005) 363–378. [Google Scholar]
- A. Emrouznejad and G.L. Yang, A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Econ. Plan. Sci. 61 (2018) 4–8. [CrossRef] [Google Scholar]
- S. Fallah-Fini, K. Triantis and A.L. Johnson, Reviewing the literature on non-parametric dynamic efficiency measurement: State-of-the-art. J. Prod. Anal. 41 (2014) 51–67. [CrossRef] [Google Scholar]
- R. F¨are and S. Grosskopf, Intertemporal Production Frontiers: With Dynamic DEA. Kluwer Academic Publishers, Boston (1996). [CrossRef] [Google Scholar]
- R. Farzipoor Saen, Supplier selection by the new AR-IDEA model. Int. J. Adv. Manuf. Technol. 39 (2008) 1061–1070. [CrossRef] [Google Scholar]
- R. Farzipoor Saen, Developing a new data envelopment analysis methodology for supplier selection in the presence of both undesirable outputs and imprecise data. Int. J. Adv. Manuf. Technol. 51 (2010) 1243–1250. [Google Scholar]
- H. Fukuyama and W.L. Weber, A dynamic network DEA model with an application to Japanese Shinkin banks. In: Efficiency and Productivity Growth: Modelling in the Financial Services Industry (2013) 193–213. [CrossRef] [Google Scholar]
- S. Ghobadi, K. Soleimani-Chamkhoram and E. Zanboori, Simultaneous estimation of input–output levels under improving efficiency level in an assessment window. Soft Comput. 27 (2023) 4553–4577. [CrossRef] [Google Scholar]
- B. Golany and Y. Roll, An application procedure for DEA. Omega 17 (1989) 237–250. [CrossRef] [Google Scholar]
- R. Gulati and S. Kumar, Assessing the productivity growth of Indian banks during the post-deregulation period using non-radial Malmquist productivity index. Int. J. Oper. Res. 25 (2016) 169–195. [CrossRef] [MathSciNet] [Google Scholar]
- R. Gulati and S. Kumar, Analysing banks’ intermediation and operating efficiencies using the two-stage network DEA model: The case of India. Int. J. Product. Perform. Manag. 66 (2017) 500–516. [CrossRef] [Google Scholar]
- S.H.R. Hajiagha, H.A. Mahdiraji, M. Tavana and S.S. Hashemi, A novel common set of weights method for multi-period efficiency measurement using mean-variance criteria. Measurement 129 (2018) 569–581. [CrossRef] [Google Scholar]
- G. Halkos and K.N. Petrou, Treating undesirable outputs in DEA: A critical review. Econ. Anal. Policy 62 (2019) 97–104. [CrossRef] [Google Scholar]
- A. Hatami-Marbini, A. Emrouznejad and P.J. Agrell, Interval data without sign restrictions in DEA. Appl. Math. Model. 38 (2014) 2028–2036. [CrossRef] [MathSciNet] [Google Scholar]
- G. Hesamian and M.G. Akbari, A preference index for ranking closed intervals and fuzzy numbers. Int. J. Uncertain. Fuzz. 25 (2017) 741–757. [CrossRef] [Google Scholar]
- G.H. Jahanshahloo, F.H. Lotfi, N. Shoja, G. Tohidi and S. Razavyan, Undesirable inputs and outputs in DEA models. Appl. Math. Comput. 169 (2005) 917–925. [MathSciNet] [Google Scholar]
- G.R. Jahanshahloo, F.H. Lotfi, F.R. Balf and H.Z. Rezai, Using Monte Carlo method for ranking interval data. Appl. Math. Comput. 201 (2008) 613–620. [MathSciNet] [Google Scholar]
- M. Izadikhah, R. Roostaee and A. Emrouznejad, Fuzzy data envelopment analysis with ordinal and interval data. Int. J. Uncertain. Fuzz. Knowl. Based Syst. 29 (2021) 385–410. [CrossRef] [Google Scholar]
- C. Kao, Dynamic data envelopment analysis: A relational analysis. Eur. J. Oper. Res. 227 (2013) 325–330. [CrossRef] [Google Scholar]
- S. Keikha-Javan, M. Rostamy-Malkhalifeh and A. Payan, The parallel network dynamic DEA model with interval data. J. Data Envel. Anal. Decis. Sci. 2014 (2014) 1–11. [Google Scholar]
- K. Khalili-Damghani, M. Tavana, F.J. Santos-Arteaga and S. Mohtasham, A dynamic multi-stage data envelopment analysis model with application to energy consumption in the cotton industry. Energy Econo. 51 (2015) 320–328. [CrossRef] [Google Scholar]
- T. Koopmans, Analysis of production as an efficient combination of activities. In: Activity Analysis of Production and Allocation. John Wiley and Sons, New York (1951) 33–97. [Google Scholar]
- P.J. Korhonen and M. Luptacik, Eco-efficiency analysis of power plants: An extension of data envelopment analysis. Eur. J. Oper. Res. 154 (2004) 437–446. [CrossRef] [Google Scholar]
- V.I. Levin, Ordering of intervals and optimization problems with interval parameters. Cybern. Syst. 40 (2004) 316–324. [CrossRef] [Google Scholar]
- L. Li, X. Lv, W. Xu, Z Zhang and X Rong, Dynamic super-efficiency interval data envelopment analysis. In: 2015 10th International Conference on Computer Science & Education (ICCSE). IEEE (2015) 213–218. [Google Scholar]
- F. Liu, L.H. Pan, Z.L. Liu and Y.N. Peng, On possibility-degree formulae for ranking interval numbers. Soft Comput. 22 (2018) 2557–2565. [CrossRef] [Google Scholar]
- F.H. Lotfi and N. Poursakhi, A mathematical model for dynamic efficiency using desirable and undesirable input-output. Appl. Math. Sci. 6 (2012) 141–151. [Google Scholar]
- B. Luo, Y. Ye, N. Yao and Q. Wang, Interval number ranking method based on multiple decision attitudes and its application in decision making. Soft Comput. 25 (2021) 4091–4101. [CrossRef] [Google Scholar]
- F.B.A.R. Mariz, M.R. Almeida and D. Aloise, A review of dynamic data envelopment analysis: State of the art and applications. Int. Trans. Oper. Res. 25 (2018) 469–505. [CrossRef] [MathSciNet] [Google Scholar]
- R.K. Mavi and N.K. Mavi, National eco-innovation analysis with big data: A common-weights model for dynamic DEA. Technol. Forecast Soc. Change 162 (2021) 120369. [CrossRef] [Google Scholar]
- R. Mo, H. Huang and L. Yang, An interval efficiency measurement in DEA when considering undesirable outputs. Complexity (2020) 1–12. [Google Scholar]
- J. Nemoto and M. Goto, Measurement of dynamic efficiency in production: An application of data envelopment analysis to Japanese electric utilities. J. Product. Anal. 19 (2003) 191–210. [CrossRef] [Google Scholar]
- A. Pourhabib Yekta, S. Kordrostami, A. Amirteimoori and R. Kazemi Matin, Data envelopment analysis with common weights: The weight restriction approach. Math. Sci. 12 (2018) 197–203. [CrossRef] [MathSciNet] [Google Scholar]
- J. Puri and S.P. Yadav, Performance evaluation of public and private sector banks in India using DEA approach. Int. J. Oper. Res. 18 (2013) 91–121. [CrossRef] [Google Scholar]
- J. Puri and S.P. Yadav, A fuzzy DEA model with undesirable fuzzy outputs and its application to the banking sector in India. Expert Syst. Appl. 41 (2014) 6419–6432. [CrossRef] [Google Scholar]
- J. Puri and S.P. Yadav, Intuitionistic fuzzy data envelopment analysis: An application to the banking sector in India. Expert Syst. Appl. 42 (2015) 4982–4998. [CrossRef] [Google Scholar]
- J. Puri and S.P. Yadav, Improved DEA models in the presence of undesirable outputs and imprecise data: An application to banking industry in India. Int. J. Syst. Assur. Eng. Manag. 8 (2017) 1–22. [Google Scholar]
- J. Puri, S.P. Yadav and H. Garg, A new multi-component DEA approach using common set of weights methodology and imprecise data: An application to public sector banks in India with undesirable and shared resources. Ann. Oper. Res. 259 (2017) 351–388. [CrossRef] [MathSciNet] [Google Scholar]
- S. Razipour-GhalehJough, F.H. Lotfi, M. Rostamy-Malkhalifeh and H. Sharafi, Benchmarking bank branches: A dynamic DEA approach. J. Inf. Optm. Sci. 42 (2021) 1203–1236. [Google Scholar]
- RBI, Reserve bank of India: Statistical tables relating to banks in India, 2019–2021 (2021). https://dbie.rbi.org.in/DBIE/dbie.rbi?site=publications#!4. [Google Scholar]
- H. Scheel, Undesirable outputs in efficiency valuations. Eur. J. Oper. Res. 132 (2001) 400–410. [Google Scholar]
- A. Sengupta and T.K. Pal, Fuzzy Preference Ordering of Interval Numbers in Decision Problems. Springer, Berlin (2009). [CrossRef] [Google Scholar]
- P. Sevastjanov and P. Róg, Two-objective method for crisp and fuzzy interval comparison in optimization. Comput. Oper. Res. 33 (2006) 115–131. [CrossRef] [Google Scholar]
- M. Shafiee, M. Sangi and M. Ghaderi, Bank performance valuation using dynamic DEA: A slacks-based measure approach. Int. J. Appl. Oper. Res. 4 (2013) 81–90. [Google Scholar]
- K. Soleimani-Chamkhorami and S. Ghobadi, Cost-efficiency under inter-temporal dependence. Ann. Oper. Res. 302 (2021) 289–312. [CrossRef] [MathSciNet] [Google Scholar]
- K. Tone, A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 130 (2001) 498–509. [Google Scholar]
- K. Tone and M. Tsutsui, An efficiency measure of goods and bads in DEA and its application to US electric utilities. In: Asia Pacific Productivity Conference (2006). [Google Scholar]
- K. Tone and M. Tsutsui, Dynamic DEA with network structure: A slacks-based measure approach. Omega 42 (2014) 124–131. [CrossRef] [Google Scholar]
- M. Toloo, N. Aghayi and M. Rostamy-Malkhalifeh, Measuring overall profit efficiency with interval data. Appl. Math. Comput. 201 (2008) 640–649. [Google Scholar]
- M. Toloo, E. Keshavarz and A. Hatami-Marbini, An interval efficiency analysis with dual-role factors. OR Spectr. 43 (2021) 255–287. [CrossRef] [Google Scholar]
- K. Tone and M. Tsutsui, Dynamic DEA: A slacks-based measure approach. Omega 38 (2010) 145–156. [Google Scholar]
- P. von Geymueller, Static versus dynamic DEA in electricity regulation: The case of US transmission system operators. Cent. Eur. J. Oper. Res. 17 (2009) 397–413. [CrossRef] [Google Scholar]
- Y.M. Wang, R. Greatbanks and J.B. Yang, Interval efficiency assessment using data envelopment analysis. Fuzzy Sets and Syst. 153 (2005) 347–370. [CrossRef] [Google Scholar]
- C.N. Wang, Q.C. Luu, T.K.L. Nguyen and J.D. Day, Assessing bank performance using dynamic SBM model. Mathematics 7 (2019) 73. [CrossRef] [MathSciNet] [Google Scholar]
- P. Wanke, C.P. Barros and J.R. Faria, Financial distress drivers in Brazilian banks: A dynamic slacks approach. Eur. J. Oper. Res. 240 (2015) 258–268. [CrossRef] [Google Scholar]
- P. Wanke, M.G. Tsionas, Z. Chen and J.J.M. Antunes, Dynamic network DEA and SFA models for accounting and financial indicators with an analysis of super-efficiency in stochastic frontiers: An efficiency comparison in OECD banking. Int. Rev. Econ. Finance 69 (2020) 456–468. [CrossRef] [Google Scholar]
- P. Wanke, M. Skully, M. Wijesiri, T. Walker and L. dalla Pellegrina, Does ownership structure affect firm performance? Evidence of Indian bank efficiency before and after the global financial crisis. Int. Trans. Oper. Res. 29 (2022) 1842–1867. [CrossRef] [Google Scholar]
- A.P. Yekta, M.J.S. Noveiri, M. Maghbouli and S.A. Edalatpanah, Dynamic DEA with common weights: A case study of Iranian airlines. J. Uncertain Syst. (2024). [Google Scholar]
- Y. Zha, N. Liang, M. Wu and Y. Bian, Efficiency evaluation of banks in China: A dynamic two-stage slacks-based measure approach. Omega 60 (2016) 60–72. [CrossRef] [Google Scholar]
- N. Zhang, A. Kalhor, R. Azizi and R. Kazemi-Matin, Improved efficiency assessment in network DEA through interval data analysis: An empirical study in agriculture. RAIRO:RO 57 (2023). [Google Scholar]
- Z. Zhou, N. Amowine and D. Huang, Quantitative efficiency assessment based on the dynamic slack-based network data envelopment analysis for commercial banks in Ghana. South African J. Econ. Manag. Sci. 21 (2018) 1–11. [Google Scholar]
- X. Zhou, Z. Xu, J. Chai, L. Yao, S. Wang and B. Lev, Efficiency evaluation for banking systems under uncertainty: A multi-period three-stage DEA model. Omega 85 (2019) 68–82. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.