Open Access
Issue |
RAIRO-Oper. Res.
Volume 58, Number 5, September-October 2024
|
|
---|---|---|
Page(s) | 4607 - 4619 | |
DOI | https://doi.org/10.1051/ro/2024178 | |
Published online | 24 October 2024 |
- N.A. Abd Aziz, N. Jafari Rad and H. Kamarulhaili, A note on the double domination number in maximal outerplanar and planar graphs. RAIRO:RO 56 (2022) 3367–3371. [CrossRef] [EDP Sciences] [Google Scholar]
- B. Bollobás, Modern Graph Theory. Springer, New York (1998). [CrossRef] [Google Scholar]
- B. Bollobás and E.J. Cockayne, Graph-theoretic parameters concerning domination, independence and irredundance. J. Graph Theory 3 (1979) 241–249. [CrossRef] [MathSciNet] [Google Scholar]
- J.A. Bondy and U.S.R. Murty, Graph Theory. Springer, New York (2008). [CrossRef] [Google Scholar]
- P. Borg, Isolation of Cycles. Graphs Combin. 36 (2020) 631–637. [CrossRef] [MathSciNet] [Google Scholar]
- P. Borg, Isolation of connected graphs. Discrete Appl. Math. 339 (2023) 154–165. [CrossRef] [MathSciNet] [Google Scholar]
- P. Borg and P. Kaemawichanurat, Partial domination of maximal outerplanar graphs. Discrete Appl. Math. 283 (2020) 306–314. [CrossRef] [MathSciNet] [Google Scholar]
- P. Borg and P. Kaemawichanurat, Extensions of the art gallery theorem. Ann. Comb. 27 (2023) 31–50. [CrossRef] [MathSciNet] [Google Scholar]
- P. Borg, K. Fenech and P. Kaemawichanurat, Isolation of k-cliques. Discrete Math. 343 (2020) 111879. [CrossRef] [MathSciNet] [Google Scholar]
- P. Borg, K. Fenech and P. Kaemawichanurat, Isolation of k-cliques II. Discrete Math. 345 (2022) 112641. [CrossRef] [Google Scholar]
- C.N. Campos and Y. Wakabayashi, On dominating sets of maximal outerplanar graphs. Discrete Appl. Math. 161 (2013) 330–335. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Caro and A. Hansberg, Partial domination – the isolation number of a graph. Filomat 31 (2017) 3925–3944. [CrossRef] [MathSciNet] [Google Scholar]
- M. Chellali, O. Favaron, A. Hansberg and L. Volkmann, k-domination and k-independence in graphs: a survey. Graphs Combin. 28 (2012) 1–55. [Google Scholar]
- T.T. Chelvam and M. Sivagami, Domination in Cayley graphs: a survey. AKCE Int. J. Graphs Comb. 16 (2019) 27–40. [CrossRef] [MathSciNet] [Google Scholar]
- J. Chen and S.-J. Xu, P5-isolation in graphs. Discrete Appl. Math. 340 (2023) 331–349. [CrossRef] [MathSciNet] [Google Scholar]
- E.K. Cho, I. Choi, H. Kwon and B. Park, A tight bound for independent domination of cubic graphs without 4-cycles. J. Graph Theory 104 (2023) 372–386. [CrossRef] [MathSciNet] [Google Scholar]
- Q. Cui and J. Zhang, A sharp upper bound on the cycle isolation number of graphs. Graphs Combin. 39 (2023) 117. [CrossRef] [Google Scholar]
- W.J. Desormeaux and M.A. Henning, Paired domination in graphs: A survey and recent results. Util. Math. 94 (2014) 101–166. [MathSciNet] [Google Scholar]
- P. Dorbec, M.A. Henning, M. Montassier and J. Southey, Independent domination in cubic graphs. J. Graph Theory 80 (2015) 329–349. [CrossRef] [MathSciNet] [Google Scholar]
- O. Favaron and P. Kaemawichanurat, Inequalities between the Kk-isolation number and the independent Kk-isolation number of a graph. Discrete Appl. Math. 289 (2021) 93–97. [CrossRef] [MathSciNet] [Google Scholar]
- W. Goddard and M.A. Henning, Independent domination in graphs: A survey and recent results. Discrete Math. 313 (2013) 839–854. [CrossRef] [MathSciNet] [Google Scholar]
- D. Gonçalves, A. Pinlou, M. Rao and S. Thomassé, The domination number of grids. SIAM J. Discrete Math. 25 (2011) 1443–1453. [CrossRef] [MathSciNet] [Google Scholar]
- T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs. Marcel Dekker Inc., New York (1998). [Google Scholar]
- T.W. Haynes, S.T. Hedetniemi and M.A. Henning, editors, Structures of domination in graphs. In Vol. 66 Developments in Mathematics. Springer, Cham (2021). [CrossRef] [Google Scholar]
- T.W. Haynes, S.T. Hedetniemi and M.A. Henning, Domination in Graphs: Core Concepts. Springer Monographs in Mathematics. Springer, Cham (2023). [CrossRef] [Google Scholar]
- M.A. Henning, A survey of selected recent results on total domination in graphs. Discrete Math. 309 (2009) 32–63. [CrossRef] [MathSciNet] [Google Scholar]
- H. Hua, X. Hua, S. Klavžar and K. Xu, Relating the total domination number and the annihilation number for quasi-trees and some composite graphs. Discrete Math. 345 (2022) 112965. [CrossRef] [Google Scholar]
- R. Khoeilar, H. Karami, M. Chellali, S.M. Sheikholeslami and L. Volkmann, Nordhaus–Gaddum type results for connected and total domination. RAIRO:RO 55 (2021) S853–S862. [CrossRef] [EDP Sciences] [Google Scholar]
- W.B. Kinnersley, D.B. West and R. Zamani, Extremal problems for game domination number. SIAM J. Discrete Math. 27 (2013) 2090–2107. [CrossRef] [MathSciNet] [Google Scholar]
- S. Kosari, Z. Shao, X. Shi, S.M. Sheikholeslami, M. Chellali, R. Khoeilar and H. Karami, Cubic graphs have paired-domination number at most four-seventh of their orders. Discrete Math. 345 (2022) 113086. [CrossRef] [Google Scholar]
- O. Ore, Theory of Graphs. In Vol. 38 American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI (1962). [CrossRef] [Google Scholar]
- S. Tokunaga, T. Jiarasuksakun and P. Kaemawichanurat, Isolation number on maximal outerplanar graphs. Discrete Appl. Math. 267 (2019) 215–218. [CrossRef] [MathSciNet] [Google Scholar]
- J. Yan, Isolation of the diamond graph. Bull. Malays. Math. Sci. Soc. 45 (2022) 1169–1181. [CrossRef] [MathSciNet] [Google Scholar]
- G. Zhang and B. Wu, K1,2-isolation in graphs. Discrete Appl. Math. 304 (2021) 365–374. [CrossRef] [MathSciNet] [Google Scholar]
- G. Zhang and B. Wu, Isolation of cycles and trees in graphs. J. Xinjiang Univ. (Nat. Sci. Ed. Chin. Eng.) 39 (2022) 169–175. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.