Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 6, November-December 2024
Page(s) 5341 - 5368
DOI https://doi.org/10.1051/ro/2024186
Published online 06 December 2024
  • B. Biringer, E. Vugrin and D. Warren, Critical Infrastructure System Security and Resiliency. CRC press (2013). [CrossRef] [Google Scholar]
  • E. Bottani, T. Murino, M. Schiavo and R. Akkerman, Resilient food supply chain design: Modelling framework and metaheuristic solution approach. Comput. Ind. Eng. 135 (2019) 177–198. [CrossRef] [Google Scholar]
  • B. Coluccia, G.P. Agnusdei, P.P. Miglietta and F. De Leo, Effects of COVID-19 on the Italian agri-food supply and value chains. Food Control 123 (2021) 107839. [CrossRef] [PubMed] [Google Scholar]
  • A. Costa and L. Liberti, Relaxations of multilinear convex envelopes: dual is better than primal. In: Experimental Algorithms: 11th International Symposium, SEA 2012, Bordeaux, France, June 7-9, 2012. Proceedings 11. Springer, Berlin, Heidelberg (2012) 87–98. [Google Scholar]
  • I. Dutcă, R. Mather and F. Iora?, Sampling trees to develop allometric biomass models: How does tree selection affect model prediction accuracy and precision?. Ecol. Indic. 117 (2020) 106553. [CrossRef] [Google Scholar]
  • S.M. Gholami-Zanjani, M.S. Jabalameli and M.S. Pishvaee, A resilient-green model for multi-echelon meat supply chain planning. Comput. Ind. Eng. 152 (2021) 107018. [CrossRef] [Google Scholar]
  • S.M. Gholami-Zanjani, W. Klibi, M.S. Jabalameli and M.S. Pishvaee, The design of resilient food supply chain networks prone to epidemic disruptions. Int. J. Prod. Econ. 233 (2021) 108001. [CrossRef] [Google Scholar]
  • N. Goldbeck, P. Angeloudis and W. Ochieng, Optimal supply chain resilience with consideration of failure propagation and repair logistics. Transp. Res. E Logist. Transp. Rev. 133 (2020) 101830. [CrossRef] [Google Scholar]
  • H. Heitsch and W. Römisch, Scenario reduction algorithms in stochastic programming. Comput. Optim. Appl. 24 (2003) 187–206. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Hosseini and K. Barker, A Bayesian network model for resilience-based supplier selection. Int. J. Prod. Econ. 180 (2016) 68–87. [CrossRef] [Google Scholar]
  • S. Hosseini, D. Ivanov and A. Dolgui, Review of quantitative methods for supply chain resilience analysis. Transp. Res. E Logist. Transp. Rev. 125 (2019) 285–307. [CrossRef] [Google Scholar]
  • S. Hosseini, N. Morshedlou, D. Ivanov, M.D. Sarder, K. Barker and A. Al Khaled, Resilient supplier selection and optimal order allocation under disruption risks. Int. J. Prod. Econ. 213 (2019) 124–137. [CrossRef] [Google Scholar]
  • S. Hosseini, D. Ivanov and A. Dolgui, Ripple effect modelling of supplier disruption: Integrated Markov chain and dynamic Bayesian network approach. Int. J. Prod. Res. 58 (2020) 3284–3303. [CrossRef] [Google Scholar]
  • ISM, COVID-19 Survey: Impacts On Global Supply Chain (March 11). Available at https://www.ismworld.org/supply-management-news-andreports/newspublications/releases/2020/covid-19-impacts-on-global-supply-chains (2020). [Google Scholar]
  • D. Ivanov, Revealing interfaces of supply chain resilience and sustainability: a simulation study. Int. J. Prod. Res. 56 (2018) 3507–3523. [CrossRef] [Google Scholar]
  • D. Ivanov, A. Pavlov, A. Dolgui, D. Pavlov and B. Sokolov, Disruption-driven supply chain (re)-planning and performance impact assessment with consideration of pro-active and recovery policies. Transp. Res. E Logist. Transp. Rev. 90 (2016) 7–24. [CrossRef] [Google Scholar]
  • A. Jabbarzadeh, B. Fahimnia and F. Sabouhi, Resilient and sustainable supply chain design: Sustainability analysis under disruption risks. Int. J. Prod. Res. 56 (2018) 5945–5968. [CrossRef] [Google Scholar]
  • F. Jinfu, Z. Qiang, H.U. Junhua and L.I.U. An, Dynamic assessment method of air target threat based on improved GIFSS. J. Syst. Eng. Electron. 30 (2019) 525–534. [CrossRef] [Google Scholar]
  • K. Karwasra, G. Soni, S.K. Mangla and Y. Kazancoglu, Assessing dairy supply chain vulnerability during the Covid-19 pandemic. Int. J. Logist. Res. Appl. (2021) 1–19. [Google Scholar]
  • M. Keshavarz, H. Hosseini-Nasab, M.B. Fakhrzad and H. Khademi-Zare, Problem Data for “Impact of Resource Reconfiguration on the Dairy Supply Chain Resilience”. https://zenodo.org/records/10796024 (2024). [Google Scholar]
  • M. Keshavarz, H. Hosseini-Nasab, M.B. Fakhrzad and H. Khademi-Zare, Matlab Code for “Impact of Resource Reconfiguration on the Dairy Supply Chain Resilience”. https://github.com/marziehKeshavarz/Monte-Carlo (2024). [Google Scholar]
  • A. Khamseh, E. Teimoury and K. Shahanaghi, A new dynamic optimisation model for operational supply chain recovery. Int. J. Prod. Res. 59 (2021) 7441–7456. [CrossRef] [Google Scholar]
  • R.S. Klein, H. Luss and D.R. Smith, A lexicographic minimax algorithm for multiperiod resource allocation. Math. Program. 55 (1992) 213–234. [CrossRef] [Google Scholar]
  • S.M. Lee and J.S. Rha, Ambidextrous supply chain as a dynamic capability: Building a resilient supply chain. Manag. Decis. (2016). [Google Scholar]
  • X. Li and K. Zhang, A sample average approximation approach for supply chain network design with facility disruptions. Comput. Ind. Eng. 126 (2018) 243–251. [CrossRef] [Google Scholar]
  • J.T. Margolis, K.M. Sullivan, S.J. Mason and M. Magagnotti, A multi-objective optimization model for designing resilient supply chain networks. Int. J. Prod. Econ. 204 (2018) 174–185. [Google Scholar]
  • Y.Z. Mehrjerdi and M. Shafiee, A resilient and sustainable closed-loop supply chain using multiple sourcing and information sharing strategies. J. Clean. Prod. 289 (2021) 125141. [CrossRef] [Google Scholar]
  • P.K. Mishra and B. Raja Shekhar, Evaluating supply chain risk in Indian dairy industry: A case study. Int. J. Decis. Sci. Risk. Manag. 4 (2012) 77–91. [Google Scholar]
  • N. Ni, B.J. Howell and T.C. Sharkey, Modeling the impact of unmet demand in supply chain resiliency planning. Omega 81 (2018) 1–16. [CrossRef] [Google Scholar]
  • B.K. Pagnoncelli, S. Ahmed and A. Shapiro, Sample average approximation method for chance constrained programming: theory and applications. J. Optim. Theory Appl. 142 (2009) 399–416. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Parker and K. Ameen, The role of resilience capabilities in shaping how firms respond to disruptions. J. Bus. Res. 88 (2018) 535–541. [CrossRef] [Google Scholar]
  • S.H.R. Pasandideh, S.T.A. Niaki and A.N. Niknamfar, Lexicographic max–min approach for an integrated vendor-managed inventory problem. Knowl. Based Syst. 59 (2014) 58–65. [CrossRef] [Google Scholar]
  • T.J. Pettit, K.L. Croxton and J. Fiksel, The evolution of resilience in supply chain management: a retrospective on ensuring supply chain resilience. J. Bus. Logist. 40 (2019) 56–65. [CrossRef] [Google Scholar]
  • T. Reardon, M.F. Bellemare and D. Zilberman, How COVID-19 May Disrupt Food Supply Chains in Developing Countries. IFPRI Book Chapters (2020) 78–80. [Google Scholar]
  • S. Rezapour, R.Z. Farahani and M. Pourakbar, Resilient supply chain network design under competition: A case study. Eur. J. Oper. Res. 259 (2017) 1017–1035. [CrossRef] [Google Scholar]
  • F. Sabouhi, M.S. Jabalameli and A. Jabbarzadeh, An optimization approach for sustainable and resilient supply chain design with regional considerations. Comput. Ind. Eng. 159 (2021) 107510. [CrossRef] [Google Scholar]
  • R.M. Salles and J.A. Barria, Lexicographic maximin optimisation for fair bandwidth allocation in computer networks. Eur. J. Oper. Res. 185 (2008) 778–794. [CrossRef] [Google Scholar]
  • T. Santoso, S. Ahmed, M. Goetschalckx and A. Shapiro, A stochastic programming approach for supply chain network design under uncertainty. Eur. J. Oper. Res. 167 (2005) 96–115. [CrossRef] [Google Scholar]
  • T. Sawik, A portfolio approach to supply chain disruption management. Int. J. Prod. Res. 55 (2017) 1970–1991. [CrossRef] [Google Scholar]
  • Z. Sazvar, K. Tafakkori, N. Oladzad and S. Nayeri, A capacity planning approach for sustainable-resilient supply chain network design under uncertainty: A case study of vaccine supply chain. Comput. Ind. Eng. 159 (2021) 107406. [CrossRef] [Google Scholar]
  • M. Shafiee, Y.Z. Mehrjerdi and M. Keshavarz, Integrating lean, resilient, and sustainable practices in supply chain network: mathematical modelling and the AUGMECON2 approach. Int. J. Syst. Sci. Oper. Logist. (2021) 1–21. [Google Scholar]
  • P. Tomy, B.S. Onggo, A.H. Sadeli, D. Chaerani, A.L.H. Achmad, F.R. Hermiatin and Y. Gong, Food supply chain management in disaster events: A systematic literature review. Int. J. Disaster Risk Reduct. (2022) 103183. [Google Scholar]
  • S.A. Torabi, M. Baghersad and S.A. Mansouri, Resilient supplier selection and order allocation under operational and disruption risks. Transp. Res. E Logist. Transp. Rev. 79 (2015) 22–48. [CrossRef] [Google Scholar]
  • B.R. Tukamuhabwa, M. Stevenson, J. Busby and M. Zorzini, Supply chain resilience: definition, review and theoretical foundations for further study. Int. J. Prod. Res. 53 (2015) 5592–5623. [CrossRef] [Google Scholar]
  • L. Wang, L. Fang and K.W. Hipel, Basin-wide cooperative water resources allocation. Eur. J. Oper. Res. 190 (2008) 798–817. [CrossRef] [Google Scholar]
  • C.W. Wong, T.C. Lirn, C.C. Yang and K.C. Shang, Supply chain and external conditions under which supply chain resilience pays: An organizational information processing theorization. Int. J. Prod. Econ. 226 (2020) 107610. [CrossRef] [Google Scholar]
  • C.C. Yang and W.L. Hsu, Evaluating the impact of security management practices on resilience capability in maritime firms—A relational perspective. Transp. Res. Part. A Policy. Pract. 110 (2018) 220–233. [CrossRef] [Google Scholar]
  • M. Yavari and H. Zaker, An integrated two-layer network model for designing a resilient green-closed loop supply chain of perishable products under disruption. J. Clean. Prod. 230 (2019) 198–218. [CrossRef] [Google Scholar]
  • W. Yu, M.A. Jacobs, R. Chavez and J. Yang, Dynamism, disruption orientation, and resilience in the supply chain and the impacts on financial performance: A dynamic capabilities perspective. Int. J. Prod. Econ. 218 (2019) 352–362. [CrossRef] [Google Scholar]
  • R. Zhao, F. Yang, L. Ji and Y. Bai, Dynamic air target threat assessment based on interval-valued intuitionistic fuzzy sets, game theory, and evidential reasoning methodology. Math. Prob. Eng. (2021) 1–13. [Google Scholar]
  • Z. Zheng and W. Klibi, Panel discussion. LinkedIn Post (July 21). Available at https://www.linkedin.com/posts/zera-zheng-5b5b68b_resilience-supplychain-resilience-activity-6951068442636517376NoQq?utm_source=linkedin_share&utm_medium=member_desktop_web (2022). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.