Open Access
Issue |
RAIRO-Oper. Res.
Volume 58, Number 6, November-December 2024
|
|
---|---|---|
Page(s) | 5369 - 5380 | |
DOI | https://doi.org/10.1051/ro/2024064 | |
Published online | 06 December 2024 |
- S. Akers, D. Harel and B. Krishnamurthy, The star graph: an attractive alternative to the n-cube. In: Proc. Int. Conf. Parallel Processing, ICPP 1987. University Park (1987) 393–400. [Google Scholar]
- J. Bondy and U. Murty, Graph Theory. GTM, Springer (2008) 244. [Google Scholar]
- R. Brigham, F. Harary, E. Violin and J. Yellen, Perfect-matching preclusion. Congr. Numer. 174 (2005) 185–192. [MathSciNet] [Google Scholar]
- C. Chang, X. Li and Y. Liu, Integer k-matching preclusion of twisted cubes and (n, s)-star graphs. Appl. Math. Comput. 440 (2023) 127638. [Google Scholar]
- E. Cheng and L. Lipták, Matching preclusion for some interconnection networks. Networks 50 (2007) 173–180. [CrossRef] [MathSciNet] [Google Scholar]
- E. Cheng and O. Siddiqui, Strong matching preclusion of arrangement graphs. J. Interconnect. Netw. 16 (2016) 1–14. [Google Scholar]
- E. Cheng, L. Lesniak, M. Lipman and L. Lipták, Matching preclusion for altermating group and their generalizations. Int. J. Found. Comput. Sci. 6 (2008) 1413–1437. [CrossRef] [Google Scholar]
- E. Cheng, M. Lipman, L. Lipták and D. Shermanc, Conditional matching preclusion for the arrangement graphs. Theoret. Comput. Sci. 412 (2011) 6279–6289. [CrossRef] [MathSciNet] [Google Scholar]
- E. Cheng, J. Kelm and J. Renzi, Strong matching preclusion of (n,k)-star graphs. Theor. Comput. Sci. 615 (2016) 91–101. [CrossRef] [Google Scholar]
- K. Day and A. Tripathi, Arrangement graphs: a class of generalized star graphs. Inform. Process. Lett. 42 (1992) 235–241. [CrossRef] [MathSciNet] [Google Scholar]
- J. Fu, Conditional fault Hamiltonicity of the complete graph. Inform. Process. Lett. 107 (2008) 110–113. [CrossRef] [MathSciNet] [Google Scholar]
- H. Hsu, Y. Hsieh, J. Jimmy and L. Hsu, Fault Hamiltonicity and fault Hamiltonian connectivity of the (n, s)-star graphs. Networks 42 (2003) 189–201. [CrossRef] [MathSciNet] [Google Scholar]
- H. Hsu, T. Li, J. Tan and L. Hsu, Fault Hamiltonicity and fault Hamiltonian connectivity of the arrangement graphs. IEEE Trans. Comput. 53 (2004) 39–53. [CrossRef] [Google Scholar]
- J. Jwo, S. Lakshmivarahan and S. Dhall, A new class of interconnection networks based on the alternating group. Networks 23 (1993) 315–326. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Liu and W. Liu, Fractional matching preclusion of graphs. J. Comb. Optim. 34 (2017) 522–533. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Liu and X. Liu, Integer k-matchings of graphs. Discrete Appl. Math. 235 (2018) 118–128. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Liu, X. Su and D. Xiong, Integer k-matchings of graphs: k-Berge-Tutte formula, k-factor-critical graphs and k-barriers. Discrete Appl. Math. 297 (2021) 120–128. [CrossRef] [MathSciNet] [Google Scholar]
- T. Ma, Y. Mao, E. Cheng and J. Wang, Fractional matching preclusion for (n,k)-star graphs. Parallel Process. Lett. 28 (2018) 1–15. [Google Scholar]
- T. Ma, Y. Mao, E. Cheng and J. Wang, Fractional matching preclusion for arrangement graphs. Discrete Appl. Math. 270 (2019) 181–189. [CrossRef] [MathSciNet] [Google Scholar]
- J.H. Park and I. Ihm, Strong matching preclusion. Theor. Comput. Sci. 412 (2011) 6409–6419. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.