Open Access
Issue |
RAIRO-Oper. Res.
Volume 58, Number 6, November-December 2024
|
|
---|---|---|
Page(s) | 4889 - 4904 | |
DOI | https://doi.org/10.1051/ro/2024123 | |
Published online | 21 November 2024 |
- G.R. Argiroffo, S.M. Bianchi and A.K. Wagler, A polyhedral approach to locating-dominating sets in graphs. Electron. Notes Dis. Math. 50 (2015) 89–94. [CrossRef] [Google Scholar]
- N.A.A. Aziz, N.J. Rad and H. Kamarulhaili, A note on the double domination number in maximal outerplanar and planar graphs. RAIRO-Oper. Res. 56 (2022) 3367–3371. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- T.L. Baldwin, L. Mili, M.B. Boisen and R. Adapa, Power system observability with minimal phasor measurement placement. IEEE Trans. Power Syst. 8 (1993) 707–715. [CrossRef] [Google Scholar]
- C. Berge, Graphs and Hypergraphs. Amsterdam Publications, North Holland (1973). [Google Scholar]
- N. Bertrand, I. Charon, O. Hudry and A. Lobstein, Identifying and locating-dominating codes on chains and cycles. Eur. J. Combin. 25 (2004) 969–987. [CrossRef] [Google Scholar]
- A. Cabrera-Martinez, A new lower bound for the independent domination number of a tree. RAIRO-Oper. Res. 57 (2023) 1951–1956. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- J. Caceres, C. Hernando, M. Mora, I.M. Pelayo and M.L. Puertas, Locating-dominating codes: bounds and extremal cardinalities. Appl. Math. Comput. 220 (2013) 38–45. [MathSciNet] [Google Scholar]
- S.R. Canoy, Jr., G.A. Malacas and D. Tarepe, Locating-dominating set in graphs. Appl. Math. Sci. 8 (2014) 4381–4388. [Google Scholar]
- I. Charon, O. Hudry and A. Lobstein, Minimizing the size of an identifying or locating-dominating code in a graph is NP-hard. Theor. Comput. Sci. 290 (2003) 2109–2120. [CrossRef] [Google Scholar]
- M. Chellali and N.J. Rad, Locating-total domination critical graphs. Australas. J. Comb. 45 (2009) 227–234. [Google Scholar]
- X. Chena and M. Sohn, Bounds on the locating-total domination number of a tree. Discrete Appl. Math. 159 (2011) 769–773. [CrossRef] [MathSciNet] [Google Scholar]
- E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs. Networks 10 (1980) 211–219. [Google Scholar]
- M. Fazil, I. Javaid, M. Salman and U. Ali, Locating-dominating sets in hypergraphs. Periodica Math. Hungari. 72 (2016) 224–234. [CrossRef] [Google Scholar]
- F. Foucaud, M.A. Henning and C. Lowenstein, Locating-total dominating sets in twin-free graphs. Discrete Appl. Math. 200 (2016) 52–58. [CrossRef] [MathSciNet] [Google Scholar]
- D. Garijo, A. Gonzalez and A. Marquez, The difference between the metric dimension and the determining number of a graph. Appl. Math. Comput. 249 (2014) 487–501. [MathSciNet] [Google Scholar]
- W. Goddard and M.A. Henning, Independent domination, colorings and the fractional idomatic number of a graph. Appl. Math. Comput. 382 (2020) 125340. [MathSciNet] [Google Scholar]
- K. Haghparast, J. Amjadi, M. Chellali and S.M. Sheikholeslami, Restrained {2}-domination in graphs. RAIRO-Oper. Res. 57 (2023) 2393–410. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- S. Hayat and M. Imran, Computation of topological indices of certain networks. Appl. Math. Comput. 240 (2014) 213–228. [MathSciNet] [Google Scholar]
- T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs. Marcel Dekker Inc., New York (1998). [Google Scholar]
- T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs Advanced Topic. Boca Raton (1998). [Google Scholar]
- T.W. Haynes, M.A. Henning and J. Howarda, Locating and total dominating sets in trees. Discrete Appl. Math. 154 (2006) 1293–1300. [CrossRef] [MathSciNet] [Google Scholar]
- M.A. Henning and P. Kaemawichanurat, Connected domination critical graphs with a block having maximum number of cut vertices. Appl. Math. Comput. 406 (2021) 126248. [Google Scholar]
- M.A. Henning and C. Löwenstein, Locating-total domination in claw-free cubic graphs. Discrete Math. 312 (2012) 3107–3116. [CrossRef] [MathSciNet] [Google Scholar]
- M.A. Henning and O.R. Oellermann, Metric-locating dominating sets in graphs. Ars Comb. 73 (2004) 129–141. [Google Scholar]
- M.A. Henning and N.J. Rad, Locating-total domination in graphs. Discrete Appl. Math. 160 (2012) 1986–1993. [CrossRef] [MathSciNet] [Google Scholar]
- C. Hernando, M. Mora and I.M. Pelayo, Locating domination in bipartite graphs and their complements. Discrete Appl. Math. 263 (2019) 195–203. [CrossRef] [MathSciNet] [Google Scholar]
- R. Jayagopal, R.S. Rajan and I. Rajasingh, Tight lower bound for locating-total domination number. Int. J. Pure Appl. Math. 101 (2015) 661–668. [Google Scholar]
- S. Klavžar and M. Tavakoli, Dominated and dominator colorings over (edge) corona and hierarchical products. Appl. Math. Comput. 390 (2021) 125647. [Google Scholar]
- M. Miller, R.S. Rajan, R. Jayagopal, I. Rajasingh and P. Manuel, A note on the locating-total domination in graphs. Discuss. Math. Graph Theory 37 (2017) 745–754. [CrossRef] [MathSciNet] [Google Scholar]
- D.A. Mojdeh, I. Masoumi and L. Volkmann, Restrained double Roman domination of a graph. RAIRO-Oper. Res. 56 (2022) 2293–2304. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- O. Ore, Theory of Graphs. Vol. 38. American Mathematical Society Colloquium Publications, Providence, RI (1962). [Google Scholar]
- N.J. Rad and H. Rahbani, Bounds on the locating-domination number and differentiating-total domination number in trees. Discuss. Math. Graph Theory 38 (2018) 455–462. [CrossRef] [MathSciNet] [Google Scholar]
- N.J. Rad and L. Volkmann, Generalization of the total outer-connected domination in graphs. RAIRO-Oper. Res. 50 (2016) 233–239. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- R.S. Rajan, S. Arulanand, S. Prabhu and I. Rajasingh, 2-power domination number for Knödel graphs and its application in communication networks. RAIRO-Oper. Res. 56 (2023) 3157–3168. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- I. Rajasingh, B. Rajan and R.S. Rajan, Embedding of hypercubes into necklace, windmill and snake graphs. Inf. Process. Lett. 112 (2012) 509–515. [CrossRef] [Google Scholar]
- B. Senthilkumar, M. Chellali, H. Naresh Kumar and Y.B. Venkatakrishnan, Graphs with unique minimum vertex-edge dominating sets. RAIRO-Oper. Res. 57 (2023) 1785–1795. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- P.J. Slater, R-domination in graphs. Assoc. Comput. Mach. 23 (1976) 446–450. [CrossRef] [MathSciNet] [Google Scholar]
- P.J. Slater, Domination and location in acyclic graphs. Networks 17 (1987) 55–64. [CrossRef] [MathSciNet] [Google Scholar]
- P.J. Slater, Dominating and reference sets in a graph. J. Math. Phys. Sci. 22 (1988) 445–455. [MathSciNet] [Google Scholar]
- P.J. Slater, Fault-tolerant locating-dominating sets. Discrete Math. 249 (2002) 179–189. [CrossRef] [MathSciNet] [Google Scholar]
- W. Zhuang, Semitotal domination versus domination and total domination in trees. RAIRO-Oper. Res. 58 (2024) 1249–1256. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.