Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 6, November-December 2024
Page(s) 4701 - 4716
DOI https://doi.org/10.1051/ro/2024163
Published online 05 November 2024
  • W. Achtziger and C. Kanzow, Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications. Math. Program. 114 (2008) 69–99. [CrossRef] [MathSciNet] [Google Scholar]
  • I. Ahmad and Z. Husain, Optimality conditions and duality in nondifferentiable minimax fractional programming with generalized convexity. J. Optim. Theory Appl. 129 (2006) 255–275. [CrossRef] [MathSciNet] [Google Scholar]
  • B. Al-Shamary, S.K. Mishra and V. Laha, On approximate starshapedness in multiobjective optimization. Optim. Methods Softw. 31 (2016) 290–304. [CrossRef] [MathSciNet] [Google Scholar]
  • T. Antczak and R. Verma, Parametric nondifferentiable multiobjective fractional programming under b, ø, ¾, ρ-univexity. Turk. J. Math. 42 (2018) 2125–2147. [CrossRef] [Google Scholar]
  • T. Antczak and N. Abdulaleem, Optimality and duality results for E-differentiable multiobjective fractional programming problems under E-convexity. J. Ineq. Appl. 2019 (2019) 292. [CrossRef] [Google Scholar]
  • C.R. Bector, S. Chandra and I. Hussain, Optimality conditions and duality in subdifferentiable multiobjective fractional programming. J. Optim. Theory Appl. 79 (1993) 105–125. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Chandra, B.D. Craven and B. Mond, Vector-valued Lagrangian and multiobjective fractional programming duality. Numer. Funct. Anal. Optim. 11 (1990) 239–254. [CrossRef] [MathSciNet] [Google Scholar]
  • X. Chen, Optimality and duality for the multiobjective fractional programming with the generalized (F, ρ)-convexity. J. Math. Anal. Appl. 273 (2002) 190–205. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Chinchuluun and P.M. Pardalos, A survey of recent developments in multiobjective optimization. Ann. Oper. Res. 154 (2007) 29–50. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Chinchuluun, D. Yuan and P.M. Pardalos, Optimality conditions and duality for nondifferentiable multiobjective fractional programming with generalized convexity. Ann. Oper. Res. 154 (2007) 133–147. [CrossRef] [MathSciNet] [Google Scholar]
  • T.D. Chuong and D.S. Kim, A class of nonsmooth fractional multiobjective optimization problems. Ann. Oper. Res. 244 (2016) 367–383. [CrossRef] [MathSciNet] [Google Scholar]
  • T. Hoheisel and C. Kanzow, First-and second-order optimality conditions for mathematical programs with vanishing constraints. Appl. Math. 52 (2007) 495–514. [CrossRef] [MathSciNet] [Google Scholar]
  • T. Hoheisel and C. Kanzow, Stationary conditions for mathematical programs with vanishing constraints using weak constraint qualifications. J. Math. Anal. Appl. 337 (2008) 292–310. [CrossRef] [MathSciNet] [Google Scholar]
  • T. Hoheisel and C. Kanzow, On the abadie and guignard constraint qualifications for mathematical programmes with vanishing constraints. Optimization 58 (2009) 431–448. [CrossRef] [MathSciNet] [Google Scholar]
  • Q. Hu, J. Wang and Y. Chen, New dualities for mathematical programs with vanishing constraints. Ann. Oper. Res. 287 (2020) 233–255. [CrossRef] [MathSciNet] [Google Scholar]
  • V. Jeyakumar and B. Mond, On generalized convex mathematical programming. J. Aust. Math. Soc. Ser. B 34 (1992) 43–53. [CrossRef] [Google Scholar]
  • P.Q. Khanh and L.T. Tung, First-and second-order optimality conditions for multiobjective fractional programming. Top 23 (2015) 419–440. [CrossRef] [MathSciNet] [Google Scholar]
  • D.S. Kim, Nonsmooth multiobjective fractional programming with generalized invexity. Taiwan. J. Math. 10 (2006) 467–478. [Google Scholar]
  • D.S. Kim, S.J. Kim and M.H. Kim, Optimality and duality for a class of nondifferentiable multiobjective fractional programming problems. J. Optim. Theory Appl. 129 (2006) 131–146. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Kuk, G.M. Lee and T. Tanino, Optimality and duality for nonsmooth multiobjective fractional programming with generalized invexity. J. Math. Anal. Appl. 262 (2001) 365–375. [CrossRef] [MathSciNet] [Google Scholar]
  • V. Laha, R. Kumar, H.N. Singh and S.K. Mishra, On minimax programming with vanishing constraints. In: Optimization, Variational Analysis and Applications, IFSOVAA 2020, edited by V. Laha, P. Maréchal and S.K. Mishra. In Vol. 355V Springer Proceedings in Mathematics and Statistics. Springer, Singapore (2021). [Google Scholar]
  • Y.J. Lee and K.D. Bae, Duality in nondifferentiable multiobjective fractional programs involving cones. Taiwan. J. Math. 13 (2009) 1811–1821. [Google Scholar]
  • Z.A. Liang, H.-X. Huang and P.M. Pardalos, Efficiency conditions and duality for a class of multiobjective fractional programming problems. J. Glob. Optim. 27 (2003) 447–471. [CrossRef] [Google Scholar]
  • J.C. Liu, Optimality and duality for generalized fractional programming involving nonsmooth convex functions. Comput. Math. Appl. 32 (1996) 91–102. [CrossRef] [MathSciNet] [Google Scholar]
  • J.C. Liu, Optimality and duality for generalized fractional programming involving nonsmooth pseudoinvex functions. J. Math. Anal. Appl. 202 (1996) 667–685. [CrossRef] [MathSciNet] [Google Scholar]
  • J.C. Liu and C.S. Wu, On minimax fractional optimality conditions with convexity. J. Math. Anal. Appl. 219 (1998) 36–51. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Liu and E. Feng, Optimality conditions and duality for a class of nondifferentiable multi-objective fractional programming problems. J. Glob. Optim. 38 (2007) 653–666. [CrossRef] [Google Scholar]
  • J.C. Liu, Y. Kimura and K. Tanaka, Three types dual model for minimax fractional programming. Commun. Math. Appl. 38 (1999) 143–155. [CrossRef] [Google Scholar]
  • X.J. Long, Optimality conditions and duality for nondifferentiable multiobjective fractional programming problems with (C, α, ρ, d)-convexity. J. Optim. Theory Appl. 148 (2011) 197–208. [CrossRef] [MathSciNet] [Google Scholar]
  • X. Long, N. Huang and Z. Liu, Optimality conditions, duality and saddle points for nondifferentiable multiobjective fractional programs. J. Ind. Man. Optim. 4 (2008) 287–298. [CrossRef] [Google Scholar]
  • J.K. Maurya, A. Shahi and S.K. Mishra, Optimality and duality of pseudolinear multiobjective mathematical programs with vanishing constraints, edited by V.K. Singh, Y.D. Sergeyev and A. Fischer. In: Recent Trends in Mathematical Modeling and High Performance Computing. Trends in Mathematics, Birkh¨auser, Cham (2021). [Google Scholar]
  • S.K. Mishra and V. Laha, On approximately star-shaped functions and approximate vector variational inequalities. J. Optim. Theory Appl. 156 (2013) 278–293. [CrossRef] [MathSciNet] [Google Scholar]
  • S.K. Mishra and V. Laha, On minty variational principle for nonsmooth vector optimization problems with approximate convexity. Optim. Lett. 10 (2016) 577–589. [CrossRef] [MathSciNet] [Google Scholar]
  • S.K. Mishra, S.Y. Wang and K.K. Lai, Multiple objective fractional programming involving semilocally type I-preinvex and related functions. J. Math. Anal. Appl. 310 (2005) 626–640. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Mishra, V. Singh, V. Laha and R. Mohapatra, On constraint qualifications for multiobjective optimization problems with vanishing constraints, edited by H. Xu, S. Wang and S.Y. Wu. In: Optimization Methods, Theory and Applications. Springer, Berlin (2015). [Google Scholar]
  • S.K. Mishra, V. Singh and V. Laha, On duality for mathematical programs with vanishing constraints. Ann. Oper. Res. 243 (2016) 249–272. [CrossRef] [MathSciNet] [Google Scholar]
  • R.N. Mukherjee, Generalized convex duality for multiobjective fractional programs. J. Math. Anal. Appl. 162 (1991) 309–316. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Nobakhtian, Mixed duality without constraint qualification for nonsmooth fractional programming. Numer. Funct. Anal. Optim. 28 (2007) 1355–1367. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Nobakhtian, Generalized convexity and duality in nonsmooth problems of multiobjective optimization. J. Optim. Theory Appl. 136 (2008) 61–68. [CrossRef] [MathSciNet] [Google Scholar]
  • V. Preda, I.M. Stancu-Minasian, M. Beldimanb and A.-M. Stancu, On a general duality model in multiobjective fractional programming with n-set functions. Math. Comput. Model. 54 (2011) 490–496. [CrossRef] [Google Scholar]
  • H.N. Singh and V. Laha, On quasidifferentiable multiobjective fractional programming. Iran. J. Sci. Technol. Trans. A Sci. 46 (2022) 917–925. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Soleimani-Damaneh, Nonsmooth optimization using Mordukhovich’s subdifferential. SIAM J. Control Optim. 48 (2010) 3403–3432. [CrossRef] [Google Scholar]
  • S.K. Suneja, M.K. Srivastava and M. Bhatia, Higher order duality in multiobjective fractional programming with support functions. J. Math. Anal. Appl. 347 (2008) 8–17. [CrossRef] [MathSciNet] [Google Scholar]
  • L.T. Tung, Karush–Kuhn–Tucker optimality conditions and duality for multiobjective semi-infinite programming with vanishing constraints. Ann. Oper. Res. 311 (2022) 1307–1334. [CrossRef] [MathSciNet] [Google Scholar]
  • L.T. Tung, Karush–Kuhn–Tucker optimality conditions and duality for nonsmooth multiobjective semi-infinite programming problems with vanishing constraints. Appl. Set-Valued Anal. Optim. 4 (2022) 1–26. [Google Scholar]
  • B.B. Upadhyay and A. Ghosh, On constraint qualifications for mathematical programming problems with vanishing constraints on Hadamard manifolds. J. Optim. Theory Appl. 199 (2023) 1–35. [CrossRef] [MathSciNet] [Google Scholar]
  • B.B. Upadhyay, A. Ghosh and S. Treanţă, Optimality conditions and duality for nonsmooth multiobjective semi-infinite programming problems with vanishing constraints on Hadamard manifolds. J. Math. Anal. Appl. 531 (2024) 127–785. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.