Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 6, November-December 2024
Page(s) 5537 - 5550
DOI https://doi.org/10.1051/ro/2024216
Published online 24 December 2024
  • M. Achache, A weighted-path-following method for the linear complementarity problem. Studia Univ. Babe¸s-Bolyai. Ser. Inf. 49 (2004) 61–73. [Google Scholar]
  • M. Achache, A new primal-dual path-following method for convex quadratic programming. Comput. Appl. Math. 25 (2006) 97–110. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Achache, Complexity analysis and numerical implementation of a short-step primal-dual algorithm for linear complementarity problems. Appl. Math. Comput. 216 (2010) 1889–1895. [MathSciNet] [Google Scholar]
  • M. Achache and N. Tabchouche, A full-Newton step feasible interior-point algorithm for monotone horizontal linear complementarity problems. Optim. Lett. 13 (2018) 1039–1057. [Google Scholar]
  • M. Achache, H. Roumili and A. Keraghel, A numerical study of an infeasible primal-dual path-following algorithm for linear programming. Appl. Math Comput. 186 (2007) 1472–1479. [MathSciNet] [Google Scholar]
  • B. Alzalg, A logarithmic barrier interior-point method based on majorant functions for second-order cone programming. Optim. Lett. 14 (2020) 729–746. [CrossRef] [MathSciNet] [Google Scholar]
  • D. Benterki, J.-P. Crouzeix and B. Merikhi, A numerical feasible interior point method for linear semidefinite programs. RAIRO-Oper. Res. 41 (2007) 49–59. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • M. Bouafia and A. Yassine, An efficient parametric kernel function for large and small-update methods interior point algorithm for P*(k)-horizontal linear complementarity problem. RAIRO-Oper. Res. 57 (2023) 1599–1616. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • S. Chaghoub and D. Benterki, A logarithmic barrier method based on a new majorant function for convex quadratic programming. Int. J. Appl. Math. 51 (2021) 29–38. [Google Scholar]
  • L.B. Cherif and B. Merikhi, A penalty method for nonlinear programming. RAIRO-Oper. Res. 53 (2019) 29–38. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • E. Chouzenoux, S. Moussaoui and J. Idier, A majorize-minimize line search algorithm for barrier function optimization, in EURASIP European Signal and Image Processing Conference. IEEE, Glasgow, United Kingdom (2009) 1379–1383. [Google Scholar]
  • R.W. Cottle, J.S. Pang and R.E. Stone, The Linear Complementarity Problem. Academic, San Diego (1992). [Google Scholar]
  • J.-P. Crouzeix and B. Merikhi, A logarithmic barrier method for semi-definite programming. RAIRO-Oper. Res. 142 (2008) 123–139. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • J.-P. Crouzeix and A. Seeger, New bounds for the extreme values of a finite sample of real numbers. J. Math. Anal. Appl. 197 (1996) 411–426. [Google Scholar]
  • Z. Darvay, New interior-point algorithms in linear programming. Adv. Model. Optim. 5 (2003) 51–92. [MathSciNet] [Google Scholar]
  • W. Grimes, Path-following interior-point algorithm for monotone linear complementarity problems. Asian-Eur. J. Math. 15 (2022) 2250170. [CrossRef] [Google Scholar]
  • W. Grimes and M. Achache, An infeasible interior-point algorithm for monotone linear complementarity problems. Int. J. Inf. Appl. Math. 4 (2021) 53–59. [Google Scholar]
  • W. Grimes and M. Achache, A path-following interior-point algorithm for monotone LCP based on a modified Newton search direction. RAIRO-Oper. Res. 57 (2023) 1059–1073. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • M. Haddou, T. Migot and J. Omer, A generalized direction in interior point method for monotone linear complementarity problems. Optim. Lett. 13 (2019) 35–53. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Kojima, S. Mizuno and A. Yoshise, A polynomial algorithm for a class of linear complementarity problems. Math. Program. 44 (1989) 1–26. [CrossRef] [Google Scholar]
  • M. Kojima, N. Megiddo, S. Mizuno and A. Yoshise, A unified approach to interior point algorithms for linear complementarity problems, in: Lecture Notes in Computer Science. Vol. 538. Springe-Verlag, Berlin, Germany (1991). [CrossRef] [Google Scholar]
  • A. Leulmi, B. Merikhi and D. Benterki, Study of a logarithmic barrier approach for linear semidefinite programming. J. Siberian Federal Univ. Math. Phys. 11 (2018) 300–312. [CrossRef] [Google Scholar]
  • L. Menniche and D. Benterki, A logarithmic barrier approach for linear programming. J. Comput. Appl. Math. 312 (2017) 267–275. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Peypouquet, Convex Optimization in Normed Spaces, Theory, Methods and Examples. Springer, (2015). [CrossRef] [Google Scholar]
  • S.J. Wright, Primal-Dual Interior Point Methods. SIAM, University City (1997). [CrossRef] [Google Scholar]
  • A. Yassine, Comparative study between Lemke’s method and the interior point method for the monotne linear complementarity problem. Studia Univ. Babe¸s-Bolyai. Ser. Inf. 3 (2008) 119–132. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.