Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 6, November-December 2024
Page(s) 5403 - 5419
DOI https://doi.org/10.1051/ro/2024207
Published online 16 December 2024
  • B. Ruskey and E. Rosenberg, Minimizing risk in Bayesian supply chain networks. Comput. Ind. Eng. 169 (2022) 108134.1–108134.12. [CrossRef] [Google Scholar]
  • S. Laari, P. Wetzel, J. Toyli and T. Solakivi, Leveraging supply chain networks for sustainability beyond corporate boundaries: explorative structural network analysis. J. Clean. Prod. 377 (2022) 1–17. [Google Scholar]
  • Y. Li and C.W. Zobel, Exploring supply chain network resilience in the presence of the ripple effect. Int. J. Prod. Econ. 228 (2020) 107693.1–107693.13. [Google Scholar]
  • F.J. Nezhad, M. Taghizadeh-Yazdi, J.H. Dahooie, A.Z. Babgohari and S.M. Sajadi, Designing a new mathematical model for optimising a multi-product RFID-based closed-loop food supply chain with a green entrepreneurial orientation. Br. Food J. 124 (2022) 2114–2148. [CrossRef] [Google Scholar]
  • S. Lian, X. Han, H. Li, et al., Simulation of detection method of anomalous node mining in a distributed network. Comput. Simul. 40 (2023) 409–413. [Google Scholar]
  • K.K. Pattanaik and A. Trivedi, A dynamic distributed boundary node detection algorithm for management zone delineation in precision agriculture. J. Netw. Comput. App. 167 (2020) 102712.1–102712.19. [Google Scholar]
  • M.P. Anuradha, A.M. Swetha and M. Doraipandian, Fault node detection and connectivity restoration with mobile relay node in wireless sensor networks. J. Comput. Sci. 16 (2020) 551–558. [CrossRef] [Google Scholar]
  • S. Janakiraman, An improved rank criterion-based NLOS node detection mechanism in VANETs. Int. J. Intell. Unmanned Syst. 9 (2020) 1–15. [CrossRef] [Google Scholar]
  • M. Raeispour, H. Atrianfar, H.R. Baghaee and G.B. Gharehpetian, Resilient distributed control of BESSs and VSC-based microgrids considering switching topologies and nonuniform time-varying delays. IET Gener. Transm. Distrib. 14 (2020) 5060–5071. [CrossRef] [Google Scholar]
  • S.D. Tsolas and M.M.F. Hasan, Resilience-aware design of interconnected supply chain networks with application to water-energy nexus. AIChE J. 67 (2021) 17386.1–17386.11. [CrossRef] [Google Scholar]
  • Y. Jabarzadeh, H. Reyhani Yamchi, V. Kumar and N. Ghaffarinasab, A multi-objective mixed-integer linear model for sustainable fruit closed-loop supply chain network. Manage. Environ. Qual. Int. J. 31 (2020) 1351–1373. [CrossRef] [Google Scholar]
  • R.S. Gaykar, V. Khanaa and S.D. Joshi, Mapping of virtual machines using machine learning algorithms for detection of faulty nodes. Int. J. Saf. Secur. Eng. Interdiscipl. J. Res. App. 12 (2022) 681–690. [Google Scholar]
  • D. Chen, D. Sun, Y. Yin, L. Dhamotharan, A. Kumar and Y. Guo, The resilience of logistics network against node failures. Int. J. Prod. Econ. 244 (2022) 108373.1–108373.15. [CrossRef] [Google Scholar]
  • F. Paulis, S. Scafati, C. Olivieri and A. Orlandi, Single-step algorithm for the cascade assembly of multiple S-parameters based multiports networks. Int. J. RF Microwave Comput.-Aided Eng. 32 (2022) 23070–23082. [CrossRef] [Google Scholar]
  • R. Rathore, J.J. Thakkar and J.K. Jha, Evaluation of risks in foodgrains supply chain using failure mode effect analysis and fuzzy VIKOR. Int. J. Qual. Reliab. Manage. 38 (2020) 551–580. [Google Scholar]
  • P. Verma, Assessment of pre and post-disaster supply chain resilience based on network structural parameters with CVAR as a risk measure. Int. J. Prod. Econ. 227 (2020) 107655.1–107655.17. [Google Scholar]
  • R.N. Jadoon, A.A. Awan, M.A. Khan, W.Y. Zhou and A. Shahzad, An efficient nodes failure recovery management algorithm for mobile sensor networks. Math. Probl. Eng. 2020 (2020) 1749467.1–1749467.14. [CrossRef] [Google Scholar]
  • G.U. Alozie, A. Arulselvan, K. Akartunal and E.L. Pasiliao, A heuristic approach for the distance-based critical node detection problem in complex networks. J. Oper. Res. Soc. 73 (2022) 1347–1361. [CrossRef] [Google Scholar]
  • I.H. Abdulqadder, S. Zhou, D. Zou, I.T. Aziz and S.M.A. Akber, Multi-layered intrusion detection and prevention in the SDN/NFV enabled cloud of 5G networks using AI-based defense mechanisms. Comput. Netw. 179 (2020) 107364.1–107364.19. [CrossRef] [Google Scholar]
  • R.R. Priyadarshini and N. Sivakumar, Failure prediction, detection & recovery algorithms using MCMC in tree-based network topology to improve coverage and connectivity in 3D-UW environment. Appl. Acoust. 158 (2020) 107053.1–107053.9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.