Open Access
Issue
RAIRO-Oper. Res.
Volume 58, Number 6, November-December 2024
Page(s) 5421 - 5439
DOI https://doi.org/10.1051/ro/2024161
Published online 16 December 2024
  • A. Charnes, W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. [CrossRef] [Google Scholar]
  • A. Emrouznejad and G.L. Yang, A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Socio-Econ. Plan. Sci. 61 (2018) 4–8. [CrossRef] [Google Scholar]
  • R.G. Thompson, L.N. Langemeier, C.T. Lee, E. Lee and R.M. Thrall, The role of multiplier bounds in efficiency analysis with application to Kansas farming. J. Econ. 46 (1990) 93–108. [CrossRef] [Google Scholar]
  • R.G. Thompson, P.S. Dharmapala, L.J. Rothenberg and R.M. Thrall, DEA ARs and CRs applied to worldwide major oil companies. J. Product. Anal. 5 (1994) 181–203. [CrossRef] [Google Scholar]
  • A. Charnes, W.W. Cooper, Q.L. Wei and Z.M. Huang, Cone ratio data envelopment analysis and multi-objective programming. Int. J. Syst. Sci. 20 (1989) 1099–1118. [CrossRef] [Google Scholar]
  • E. Thanassoulis and R. Dyson, Estimating preferred target input–output levels using data envelopment analysis. Eur. J. Oper. Res. 56 (1992) 80–97. [CrossRef] [Google Scholar]
  • S. Razipour-GhalehJough, F. Hosseinzadeh Lotfi, G. Jahanshahloo, M. Rostamy-Malkhalifeh and H. Sharafi, Finding closest target for bank branches in the presence of weight restrictions using data envelopment analysis. Ann. Oper. Res. 288 (2019) 1–33. [Google Scholar]
  • R. Allen, A. Athanassopoulos, R.G. Dyson and E. Thanassoulis, Weights restrictions and value judgements in data envelopment analysis: evolution, development and future directions. Ann. Oper. Res. 73 (1997) 13–34. [CrossRef] [Google Scholar]
  • F. Pedraja-Chaparro, J. Salinas-Jimenez and P. Smith, On the role of weight restrictions in data envelopment analysis. J. Prod. Anal. 8 (1997) 215–230. [CrossRef] [Google Scholar]
  • L. Angulo-Meza and M.P.E. Lins, Review of methods for increasing discrimination in data envelopment analysis. Ann. Oper. Res. 116 (2002) 225–242. [CrossRef] [MathSciNet] [Google Scholar]
  • V. Podinovski, Production trade-offs and weight restrictions in data envelopment analysis. J. Oper. Res. Soc. 55 (2004) 1311–1322. [CrossRef] [Google Scholar]
  • Q. Wei, J. Zhang and X. Zhang, An inverse DEA model for inputs/outputs estimate. Eur. J. Oper. Res. 121 (2000) 151–163. [Google Scholar]
  • G.R. Jahanshahloo, A.H. Vencheh, A.A. Foroughi and R.K. Matin, Inputs/outputs estimation in DEA when some factors are undesirable. Appl. Math. Comput. 156 (2004) 19–32. [Google Scholar]
  • G.R. Jahanshahloo, F.H. Lotfi, N. Shoja, G. Tohidi and S. Razavyan, Sensitivity of efficiency classifications in the inverse DEA models. Appl. Math. Comput. 169 (2005) 905–916. [Google Scholar]
  • S. Lertworasirikul, P. Charnsethikul and S.-C. Fang, Inverse data envelopment analysis model to preserve relative efficiency values: the case of variable returns to scale. Comput. Ind. Eng. 61 (2011) 1017–1023. [Google Scholar]
  • M. Ghiyasi, On inverse DEA model: the case of variable returns to scale. Comput. Ind. Eng. 87 (2015) 407–409 [CrossRef] [Google Scholar]
  • G.R. Jahanshahloo, M. Soleimani-Damaneh and S. Ghobadi, Inverse DEA under inter-temporal dependence using multiple-objective programming. Eur. J. Oper. Res. 240 (2015) 447–456. [Google Scholar]
  • M. Ghiyasi, Inverse DEA based on cost and revenue efficiency. Comput. Ind. Eng. 114 (2017) 258–263. [Google Scholar]
  • M. Eyni, G. Tohidi and S. Mehrabeian, Applying inverse DEA and cone constraint to sensitivity analysis of DMUs with undesirable inputs and outputs. J. Oper. Res. Soc. 68 (2017) 34–40. [CrossRef] [Google Scholar]
  • M. Ghiyasi and N. Zhu, An inverse semi-oriented radial data envelopment analysis measure for dealing with negative data. IMA J. Manag. Math. 31 (2020) 505–516. [MathSciNet] [Google Scholar]
  • D.-J. Lim, Inverse data envelopment analysis for operational planning: the impact of oil price shocks on the production frontier. Expert Syst. Appl. 161 (2020) 113726. [CrossRef] [Google Scholar]
  • K. Soleimani-Chamkhorami, F. Hosseinzadeh Lotfi, G. Jahanshahloo and M. Rostamy-Malkhalifeh, A ranking system based on inverse data envelopment analysis. J. Manag. Math. 31 (2020) 367–385. [Google Scholar]
  • T. Sayar, M. Ghiyasi and J. Fathali, New inverse DEA models for budgeting and planning. RAIRO:RO 55 (2021) 1933–1948. [CrossRef] [EDP Sciences] [Google Scholar]
  • M. Soltanifar, M. Ghiyasi and H. Sharafi, Inverse DEA-R models for merger analysis with negative data. IMA J. Manag. Math. 34 (2022) 491–510. [Google Scholar]
  • M. Ghiyasi, M. Soltanifar and H. Sharafi, A novel inverse DEA-R model with application in hospital efficiency. Socio-Econ. Plan. Sci. 84 (2022) 101427. [CrossRef] [Google Scholar]
  • M. Ghiyasi and N. Zhu, An inverse semi-oriented radial data envelopment analysis measure for dealing with negative data. IMA J. Manag. Math. 31 (2020) 505–516. [MathSciNet] [Google Scholar]
  • D. Mahla, S. Agarwal, G.R. Amin and T. Mathur, An inverse data envelopment analysis model to consider ratio data and preferences of decision-makers. IMA J. Manag. Math. 43 (2023) 441–464. [Google Scholar]
  • J. Lu, M. Li and Z. Shen, A new inverse DEA model with frontier changes for analyzing the achievement path of CO2 emissions target of China in 2030. J. Clean. Prod. 375 (2022) 134014. [CrossRef] [Google Scholar]
  • A. Kazemi and D.U.A. Galagedera, An inverse DEA model for intermediate and output target setting in serially linked general two-stage processes. IMA J. Manag. Math. 34 (2023) 511–539. [MathSciNet] [Google Scholar]
  • J. Gerami, M.R. Mozaffari, P.F. Wanke and H.L. Correa, A generalized inverse DEA model for firm restructuring based on value efficiency. IMA J. Manag. Math. 34 (2023) 541–580. [MathSciNet] [Google Scholar]
  • S. Lozano and I. Contreras, Target setting using an enhanced inverse DEA approach: application to Spanish universities. J. Oper. Res. Soc. (2024) DOI: 10.1080/01605682.2024.2306176. [Google Scholar]
  • K.K. Orisaremi, F.T. Chan and X. Fu, An improved inverse dea for assessing economic growth and environmental sustainability in opec member nations. Mathematics 11 (2023) 4861 [CrossRef] [Google Scholar]
  • M. Ghiyasi, An inverse data envelopment analysis model for solving time substitution problems. Decis. Anal. J. 11 (2024) 100467. [CrossRef] [Google Scholar]
  • M. Jahani Sayyad Noveiri, S. Kordrostami and M. Ghiyasi, Inverse data envelopment analysis optimization approaches with flexible measures. J. Model. Manag. 19 (2024) 194–214. [CrossRef] [Google Scholar]
  • T. Sayar, J. Fathali and M. Ghiyasi, The inverse 1-median problem on a tree with transferring the weight of vertices. Trans. Comb. 13 (2023) 335–350. [Google Scholar]
  • S.-W. Lin and W.-M. Lu, Using inverse DEA and machine learning algorithms to evaluate and predict suppliers’ performance in the apple supply chain. Int. J. Prod. Econ. 271 (2024) 109203. [CrossRef] [Google Scholar]
  • S.M. Tabatabai and F.A.-S. Tabatabai, Integrating inverse data envelopment analysis and machine learning for enhanced road transport safety in Iran. J. Soft Comput. Civ. Eng. 8 (2024) 141–160. [Google Scholar]
  • A. Emrouznejad, G.R. Amin, M. Ghiyasi and M. Michali, A review of inverse data envelopment analysis: origins, development, and future directions. IMA J. Manag. Math. 34 (2023) dpad006. [Google Scholar]
  • R.G. Dyson and E. Thanassoulis, Reducing weight flexibility in data envelopment analysis. J. Oper. Res. Soc. 39 (1988) 563–576. [CrossRef] [Google Scholar]
  • Y. Roll, W.D. Cook and B. Golany, Controlling factor weights in data envelopment analysis. IIE Trans. 23 (1991) 2–9. [CrossRef] [Google Scholar]
  • E. Thanassoulis, A. Boussofiane and R. Dyson, Exploring output quality targets in the provision of perinatal care in England using data envelopment analysis. Eur. J. Oper. Res. 80 (1995) 588–607. [CrossRef] [Google Scholar]
  • V.V. Podinovski and T. Bouzdine-Chameeva, Weight restrictions and free production in data envelopment analysis. Oper. Res. 61 (2013) 426–437. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Davoodi and H.Z. Rezai, Improving production possibility set with production trade-offs. Appl. Math. Model. 39 (2015) 1966–1974. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.