Open Access
Issue
RAIRO-Oper. Res.
Volume 59, Number 1, January-February 2025
Page(s) 101 - 114
DOI https://doi.org/10.1051/ro/2024130
Published online 06 January 2025
  • N. Adler, V. Liebert and E. Yazhemsky, Benchmarking airports from a managerial perspective. Omega 41 (2013) 442–458. [CrossRef] [Google Scholar]
  • J. Aparicio and J.T. Pastor, Closest targets and strong monotonicity on the strongly efficient frontier in DEA. Omega 44 (2014) 51–57. [Google Scholar]
  • J. Aparicio, J.L. Ruiz and I. Sirvent, Closest targets and minimum distance to the Pareto efficient frontier in DEA. J. Prod. Anal. 28 (2007) 209–218. [CrossRef] [Google Scholar]
  • J. Aparicio, J.M. Cordero and J.T. Pastor, The determination of the least distance to the strongly efficient frontier in Data Envelopment Analysis oriented models: modelling and computational aspects. Omega 71 (2017) 1–10. [CrossRef] [Google Scholar]
  • A. Charnes, W.W. Cooper and R.M. Thrall, A structure for classifying and characterizing efficiency and inefficiency in data envelopment analysis. J. Prod. Anal. 2 (1991) 197–237. [CrossRef] [Google Scholar]
  • W.D. Cook, K. Tone and J. Zhu, Data envelopment analysis: prior to choosing a model. Omega 44 (2014) 1–4. [Google Scholar]
  • W.D. Cook, J.L. Ruiz, I. Sirvent and J. Zhu, Within-group common benchmarking using DEA. Eur. J. Oper. Res. 256 (2017) 901–910. [CrossRef] [Google Scholar]
  • X. Dai and T. Kuosmanen, Best-practice benchmarking using clustering methods: application to energy regulation. Omega 42 (2014) 179–188. [CrossRef] [Google Scholar]
  • B. Golany, Evaluating efficiency-effectiveness-equality trade-offs: a data envelopment analysis approach. Manage. Sci. 41 (1995) 1172–1184. [CrossRef] [Google Scholar]
  • G.R. Jahanshahloo, F. Hosseinzadeh Lotfi, H. Zhiani Rezai and F. Rezai Balf, Finding strong defining hyperplanes of production possibility set. Eur. J. Oper. Res. 177 (2007) 42–54. [CrossRef] [Google Scholar]
  • H.B. Kwon, J.H. Marvel and J.J. Roh, Three-stage performance modeling using DEA-BPNN for better practice benchmarking. Expert Syst. App. 71 (2017) 429–441. [CrossRef] [Google Scholar]
  • S. Lim, H. Bar and L.H. Lee, A study on the selection of benchmarking paths in DEA. Expert Syst. App. 38 (2011) 7665–7673. [CrossRef] [Google Scholar]
  • C.A.K. Lovell and J.T. Pastor, Units invariant and translation invariant DEA models. Oper. Res. Lett. 18 (1995) 147151. [Google Scholar]
  • N. Ramón, J.L. Ruiz and I. Sirvent, Two-step benchmarking: setting more realistically achievable targets in DEA. Expert Syst. App. 92 (2017) 124–131. [Google Scholar]
  • J.L. Ruiz and I. Sirvent, Common benchmarking and ranking of units with DEA. Omega 65 (2016) 1–9. [CrossRef] [Google Scholar]
  • J.L. Ruiz and I. Sirvent, Benchmarking within a DEA framework: setting the closest targets and identifying peer groups with most similar performances. Int. Trans. Oper. Res. 29 (2022) 554–573. [CrossRef] [MathSciNet] [Google Scholar]
  • J.L. Ruiz and I. Sirvent, Identifying suitable benchmarks in the way toward achieving targets using data envelopment analysis. Int. Trans. Oper. Res. 29 (2022) 1749–1768. [CrossRef] [Google Scholar]
  • J.L. Ruiz, J.V. Segura and I. Sirvent, Benchmarking and target setting with expert preferences: an application to the evaluation of educational performance of Spanish universities. Eur. J. Oper. Res. 242 (2014) 594–605. [Google Scholar]
  • M. Tavana, M. Toloo, N. Aghayi and A. Arabmaldar, A robust cross-efficiency data envelopment analysis model with undesirable outputs. Expert Syst. App. 167 (2021) 114117. [CrossRef] [Google Scholar]
  • M. Toloo, S. Nalchigar and B. Sohrabi, Selecting most efficient information system projects in presence of user subjective opinions: a DEA approach. Cent. Eur. J. Oper. Res. 26 (2018) 1027–1051. [Google Scholar]
  • K. Tone, Variations on the theme of slacks-based measure of efficiency in DEA. Eur. J. Oper. Res. 200 (2010) 901907. [CrossRef] [Google Scholar]
  • J.-B. Yang, B.Y.H. Wong, D.-L. Xu and T.J. Stewart, Integrating DEA-orientedperformance assessment and target setting using interactive MOLP methods. Eur. J. Oper. Res. 195 (2009) 205–222. [CrossRef] [Google Scholar]
  • A. Zanella, A.S. Camanho and T.G. Dias, Benchmarking countries’ environmental performance. J. Oper. Res. Soc. 64 (2013) 426–438. [CrossRef] [Google Scholar]
  • J. Zhu, Data envelopment analysis with preference structure. J. Oper. Res. Soc. 47 (1996) 136–150. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.