Open Access
Issue
RAIRO-Oper. Res.
Volume 59, Number 1, January-February 2025
Page(s) 193 - 218
DOI https://doi.org/10.1051/ro/2024078
Published online 16 January 2025
  • M. Abdel-Basset, M. Saleh, A. Gamal and F. Smarandache, An approach of TOPSIS technique for developing supplier selection with group decision making under type-2 neutrosophic number. Appl. Soft. Comput. J. 77 (2019) 438–452. [CrossRef] [Google Scholar]
  • S. Adak and G.S. Mahapatra, Effect of reliability on multi-item inventory system with shortages and partial backlog incorporating time dependent demand and deterioration. Ann. Oper. Res. 315 (2022) 1551–1571. [CrossRef] [MathSciNet] [Google Scholar]
  • N. Benlap, A useful four valued logic, in Modern Uses of Multiple Valued Logics, edited by D. Reidel (1977) 8–37. [Google Scholar]
  • P. Biswas, S. Pramanik and B.C. Giri, A new methodology for neutrosophic multi-attribute decision making with unknown weight information. Neutrosophic Sets Syst. 3 (2014) 42–52. [Google Scholar]
  • P. Biswas, S. Pramanik and B.C. Giri, Cosine similarity measure based multi-attribute decision making with trapezoidal fuzzy neutrosophic numbers. Neutrosophic Sets Syst. 8 (2014) 46–56. [Google Scholar]
  • R.R. Chowdhury, S.K. Ghosh and K.S. Chaudhuri, An inventory model for perishable items with stock and advertisement sensitive demand. Int. J. Appl. Comput. Math. 1 (2015) 187–201. [CrossRef] [MathSciNet] [Google Scholar]
  • Z. Dai, F. Aqlan, X. Zheng and X. Gao, A location-inventory supply chain network model using two heuristic algorithms for perishable products with fuzzy constraints. Comput. Ind. Eng. 119 (2018) 338–352. [CrossRef] [Google Scholar]
  • S.K. Das and S.K. Roy, Effect of variable carbon emission in a multi-objective transportation-p-facility location problem under neutrosophic environment. Comput. Ind. Eng. 132 (2019) 311–324. [CrossRef] [Google Scholar]
  • S.K. Das, S.K. Roy and G.W. Weber, Heuristic approaches for solid transportation-p-facility location problem. Central Eur. J. Oper. Res. 28 (2020) 939–961. [Google Scholar]
  • S.K. Das, S.K. Roy and G.W. Weber, An exact and a heuristic approach for the transportation-p-facility location problem. Comput. Manag. Sci. 17 (2020) 389–407. [CrossRef] [MathSciNet] [Google Scholar]
  • S.K. Das, S.K. Roy and G.W. Weber, Application of type-2 fuzzy logic to a multi-objective green solid transportation-location problem with dwell time under carbon tax, cap, and offset policy: fuzzy versus nonfuzzy techniques. IEEE Trans. Fuzzy Syst. 28 (2020) 2711–2725. [CrossRef] [Google Scholar]
  • S.K. Das, S.K. Roy and G.W. Weber, The impact of carbon tax policy in a multi-objective green solid logistics modelling under sustainable development. Comput. Model. Ind. 4 (2022) 49–66. [Google Scholar]
  • S.K. Das, M. Pervin, S.K. Roy and G.W. Weber, Multi-objective solid transportation-location problem with variable carbon emission in inventory management: a hybrid approach. Ann. Oper. Res. 24 (2023) 283–309. [CrossRef] [MathSciNet] [Google Scholar]
  • S.K. De and I. Beg, Triangular dense fuzzy neutrosophic sets. Neutrosophic Sets Syst. 13 (2016) 24–37. [Google Scholar]
  • S.K. De and I. Beg, Triangular dense fuzzy sets and new defuzzification methods. J. Intell. Fuzzy Syst. 31 (2016) 469–477. [Google Scholar]
  • M. De, B. Das and M. Maiti, EPL models with fuzzy imperfect production system including carbon emission: a fuzzy differential equation approach. Soft Comput. 24 (2020) 1293–1313. [Google Scholar]
  • I. Deli and Y. S¸uba¸s, A ranking method of single valued neutrosophic numbers and its applications to multi-attribute decision making problems. Int. J. Mach. Learn. Cyb. 8 (2017) 1309–1322. [CrossRef] [Google Scholar]
  • J.K. Dey, S.K. Mandal and M. Maiti, Two storage inventory problem with dynamic demand and interval-valued lead-time over finite time horizon under inflation and time value of money. Eur. J. Oper. Res. 185 (2008) 170–194. [CrossRef] [Google Scholar]
  • G. Durga Bhavani and G.S. Mahapatra, Inventory system with generalized triangular neutrosophic cost pattern incorporating maximum life-time-based deterioration and novel demand through PSO. Soft Comput. 27 (2023) 2385–2402. [CrossRef] [Google Scholar]
  • G. Durga Bhavani, G.S. Mahapatra and A. Kumar, An integrated fuzzy production inventory model for manufacturer–retailer coordination under simple carbon tax system. J. Manag. Anal. 10 (2023) 38–88. [Google Scholar]
  • A. Chakraborty, S.P. Mondal, A. Ahmadian, N. Senu, S. Alam and S. Salahshour, Different forms of triangular neutrosophic numbers, de-neutrosophication techniques, and their applications. Symmetry 10 (2018) 327. [CrossRef] [Google Scholar]
  • A. Chakraborty, S.P. Mondal, A. Mahata and S. Alam, Different linear and non-linear form of trapezoidal neutrosophic numbers, de-neutrosophication techniques and its application in time-cost optimization technique, sequencing problem. RAIRO:RO 55 (2021) S97–S118. [CrossRef] [EDP Sciences] [Google Scholar]
  • P. Gautam and A. Khanna, An imperfect production inventory model with setup cost reduction and carbon emission for an integrated supply chain. Uncertain Supply Chain Manag. 6 (2018) 271–286. [CrossRef] [Google Scholar]
  • V. Gupta and S.R. Singh, An integrated inventory model with fuzzy variables, three-parameter Weibull deterioration and variable holding cost under inflation. Int. J. Oper. Res. 18 (2013) 434–451. [CrossRef] [MathSciNet] [Google Scholar]
  • T.S. Haque, A. Chakraborty, S.P. Mondal and S. Alam, A novel logarithmic operational law and aggregation operators for trapezoidal neutrosophic number with MCGDM skill to determine most harmful virus. Appl. Intell. 52 (2021) 4398–4417. [Google Scholar]
  • T.S. Haque, A. Chakraborty, S.P. Mondal and S. Alam, New exponential operational law for measuring pollution attributes in mega-cities based on MCGDM problem with trapezoidal neutrosophic data. J. Ambient Intell. Humaniz. Comput. 13 (2022) 5591–5608. [CrossRef] [Google Scholar]
  • V. Hovelaque and L. Bironneau, The carbon-constrained EOQ model with carbon emission dependent demand. Int. J. Prod. Econ. 164 (2015) 285–291. [Google Scholar]
  • S. Huang, C.C. Fang and Y.A. Lin, Inventory management in supply chains with consideration of Logistics, green investment and different carbon emissions policies. Comput. Ind. Eng. 139 (2020) 106207. [CrossRef] [Google Scholar]
  • C.K. Jaggi, M. Tripathy, A.K. Sharma and G. Sharma, An inventory model for non-instantaneous deteriorating item under progressive trade credit policy. Rev. Investig. Oper. 41 (2020) 804–825. [Google Scholar]
  • B. Karthick and R. Uthayakumar, A sustainable supply chain model with two inspection errors and carbon emissions under uncertain demand. Clean. Eng. Technol. 5 (2021) 100307. [CrossRef] [Google Scholar]
  • M.A.A. Khan, A.A. Shaikh, I. Konstantaras, A.K. Bhunia and L.E. Cárdenas-Barrón, Inventory models for perishable items with advanced payment are linearly time-dependent holding costs, and demand is dependent on advertisement and selling price. Int. J. Prod. Econ. 230 (2020) 107804. [CrossRef] [Google Scholar]
  • A. Khanna, A. Kishore, B. Sarkar and C.K. Jaggi, Inventory and pricing decisions for imperfect quality items with inspection errors, sales returns, and partial backorders under inflation. RAIRO:RO 54 (2020) 284–306. [Google Scholar]
  • S. Kumar, C.C. Singh, B. Sarkar and A. Kumar, Fuzzy reverse logistics inventory model of smart items with two warehouses of a retailer considering carbon emissions. RAIRO:RO 55 (2021) 2285–2307. [CrossRef] [EDP Sciences] [Google Scholar]
  • S. Kundu and T. Chakrabarti, A fuzzy rough integrated multi-stage supply chain inventory model with carbon emissions under inflation and time-value of money. Int. J. Math. Oper. Res. 14 (2019) 123–145. [CrossRef] [MathSciNet] [Google Scholar]
  • Z. Li and J. Hai, Inventory management for one warehouse multi-retailer systems with carbon emission costs. Comput. Ind. Eng. 130 (2019) 565–574. [CrossRef] [Google Scholar]
  • R.X. Liang, J.Q. Wang and H.Y. Zhang, A multi-criteria decision-making method based on single-valued trapezoidal neutrosophic preference relations with complete weight information. Neural Comput. Appl. 30 (2018) 3383–3398. [CrossRef] [Google Scholar]
  • C.J. Lu, C.T. Yang and H.F. Yen, Stackelberg game approach for sustainable production-inventory model with collaborative investment in technology for reducing carbon emissions. J. Clean. Prod. 270 (2020) 121963. [CrossRef] [Google Scholar]
  • S. Maity, A. Chakraborty, S.K. De, S.P. Mondal and S. Alam, A comprehensive study of a backlogging EOQ model with nonlinear heptagonal dense fuzzy environment. RAIRO:RO 54 (2020) 267–286. [CrossRef] [EDP Sciences] [Google Scholar]
  • K. Mandal and S. Pramanik, Neutrosophic decision making model of school choice. Neutrosophic Sets Syst. 7 (2015) 8–17. [Google Scholar]
  • C.G.D.C. Márquez, L.E. Cárdenas-Barrón and B. Mandal, An inventory model for growing items with imperfect quality when the demand is price sensitive under carbon emissions and shortages. Math. Probl. Eng. 2 (2021) 1–23. [CrossRef] [Google Scholar]
  • A.H.M. Mashud, M.R. Hasan, H.M. Wee and Y. Daryanto, Non-instantaneous deteriorating inventory model under the joined effect of trade-credit, preservation technology and advertisement policy. Kybernetes 49 (2020) 1645–1674. [Google Scholar]
  • U. Mishra, J.Z. Wu and B. Sarkar, Optimum sustainable inventory management with backorder and deterioration under controllable carbon emissions. J. Clean. Prod. 279 (2021) 123699. [CrossRef] [Google Scholar]
  • R.K. Mishra and V.K. Mishra, An optimum sustainable inventory model for non-instantaneous deterioration and quality assessment under carbon emissions and complete backordering shortage. Arab. J. Sci. Eng. 47 (2022) 3929–3944. [CrossRef] [Google Scholar]
  • I. Nouira, R. Hammami, Y. Frein and C. Temponi, Design of forward supply chains: impact of a carbon emissions-sensitive demand. Int. J. Prod. Econ. 173 (2016) 80–98. [CrossRef] [Google Scholar]
  • S. Pal and A. Chakraborty, Triangular neutrosophic based production reliability model of deteriorating item with ramp type demand under shortages and time discounting. Neutrosophic Sets Syst. 35 (2020) 347–367. [Google Scholar]
  • S. Pal and A. Chakraborty, Triangular neutrosophic-based EOQ model for non-instantaneous deteriorating item under shortages. Am. J. Bus. Oper. Res. 1 (2020) 28–35. [Google Scholar]
  • S. Pal, G.S. Mahapatra and G.P. Samanta, An EPQ model of ramp type demand with Weibull deterioration under inflation and finite horizon in crisp and fuzzy environment. Int. J. Prod. Econ. 156 (2014) 159–166 [Google Scholar]
  • S. Pal, G.S. Mahapatra and G.P. Samanta, An inventory model of price and stock dependent demand rate with deterioration under inflation and delay in payment. Int. J. Syst. Assur. Eng. Manag. 5 (2014) 591–601. [CrossRef] [Google Scholar]
  • J. Pan, C.Y. Chiu, K.S. Wu, H.F. Yen and Y.W. Wang, Sustainable production – inventory model in technical cooperation on investment to reduce carbon emissions. Processes 8 (2020) 1438. [CrossRef] [Google Scholar]
  • J.L. Pan, C.Y. Chiu, K.S. Wu, C.T. Yang and Y.W. Wang, Optimal pricing, advertising, production, inventory and investing policies in a multi-stage sustainable supply chain. Energies 14 (2021) 7544–7564. [CrossRef] [Google Scholar]
  • J.J. Peng, J.Q. Wang, X. Wu, J. Wang and X.H. Chen, Multi-valued neutrosophic sets and power aggregation operators with their applications in multi-criteria group decision making problems. Int. J. Comput. Intell. Syst. 8 (2015) 345–363. [CrossRef] [Google Scholar]
  • S. Pramanik and R. Mallick, VIKOR-based MAGDM strategy with a trapezoidal neutrosophic number. Neutrosophic Sets Syst. 22 (2018) 118–130. [Google Scholar]
  • S. Priyan, P. Mala and R. Gurusamy, Optimal inventory strategies for a two-echelon supply chain system involving carbon emissions and fuzzy deterioration. Int. J. Log. Syst. Manag. 37 (2020) 324–351. [Google Scholar]
  • K. Rana, S.R. Singh, N. Saxena and S.S. Sana, Growing items inventory model for carbon emission under the permissible delay in payment with partially backlogging. Green Finance 3 (2021) 153–174. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Rani, R. Ali and A. Agarwal, Fuzzy inventory model for deteriorating items in a green supply chain with carbon concerned demand. OPSEARCH 56 (2019) 91–122. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Saha and T. Chakrabarti, Two-echelon supply chain model for deteriorating items in an imperfect production system with advertisement and stock dependent demand under trade credit. Int. J. Supply Oper. Manag. 5 (2018) 207–217. [Google Scholar]
  • M. Sahin, V. Ulucay and H. Acioglu, Some weighted arithmetic operator and geometric operators with SVNSs and their application to multi-criteria decision-making problem, in New Trends in Neutrosophic Theory and Applications. Vol. 2. Pons Editions, Brussels (2018) 85–104. [Google Scholar]
  • B. Sarkar, B. Ganguly, M. Sarkar and S. Pareek, Effect of variable transportation and carbon emission in a three-echelon supply chain model. Transp. Res. E 91 (2016) 112–128. [CrossRef] [Google Scholar]
  • L. Shaw, S.K. Das and S.K. Roy, Location-allocation problem for resource distribution under uncertainty in disaster relief operations. Socio-Econ. Plan. Sci. 82 (2022) 101232. [CrossRef] [Google Scholar]
  • S.R. Singh and K. Rana, Effect of inflation and variable holding cost on life time inventory model with multi variable demand and lost sales. Int. J. Recent Technol. Eng. 8 (2020) 5513–5519. [Google Scholar]
  • F. Smarandache, A unifying field in logics: neutrosophic logic, in Neutrosophy, Neutrosophic Set, Neutrosophic Probability and Statistics, 4th edition. American Research Press, Rehoboth (1998). [Google Scholar]
  • R. Sundararajan, S. Vaithyasubramanian and M. Rajinikannan, Price determination of a non-instantaneous deteriorating EOQ model with shortage and inflation under delay in payment. Int. J. Syst. Sci. Oper. Log. 8 (2021) 1–21. [Google Scholar]
  • A.A. Taleizadeh, B. Hazarkhani and I. Moon, Joint pricing and inventory decisions with carbon emission considerations, partial backordering and planned discounts. Ann. Oper. Res. 290 (2020) 95–113. [CrossRef] [MathSciNet] [Google Scholar]
  • A.A. Taleizadeh, L. Aliabadi and P. Thaichon, A sustainable inventory system with price-sensitive demand and carbon emissions under partial trade credit and partial backordering. Oper. Res. 22 (2022) 4471–4516. [Google Scholar]
  • M. Tavana, H. Tohidi, M. Alimohammadi and R. Lesansalmasi, A location-inventory-routing model for green supply chains with low-carbon emissions under uncertainty. Environ. Sci. Pollut. Res. 28 (2021) 50636–50648. [CrossRef] [PubMed] [Google Scholar]
  • S. Tiwari, Y. Daryanto and H.M. Wee, Sustainable inventory management with deteriorating and imperfect quality items considering carbon emission. J. Clean. Prod. 192 (2018) 281–292. [Google Scholar]
  • H. Wang, F. Smarandache, Y. Zhang and R. Sunderraman, Single-valued neutrosophic sets. Infinite study. viXra (2010) 1–5. [Google Scholar]
  • P. Wu, Y. Jin, Y. Shi and H. Shyu, The impact of carbon emission costs on manufacturers’ production and location decision. Int. J. Prod. Econ. 193 (2017) 193–206. [CrossRef] [Google Scholar]
  • A.S. Yadav and A. Swami, An inventory model for non-instantaneous deteriorating items with variable holding cost under two-storage. Int. J. Procure. Manag. 12 (2019) 690–710. [Google Scholar]
  • D. Yadav, S.R. Singh and M. Sarin, Inventory model considering deterioration, stock-dependent and ramp-type demand with reserve money and carbon emission. Int. J. Recent Technol. Eng. 8 (2020) 5330–5337. [Google Scholar]
  • J. Ye, Trapezoidal neutrosophic set and its application to multiple attribute decision making. Neural Comput. Appl. 26 (2015) 1157–1166. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.