Open Access
Issue
RAIRO-Oper. Res.
Volume 59, Number 1, January-February 2025
Page(s) 219 - 237
DOI https://doi.org/10.1051/ro/2024169
Published online 16 January 2025
  • M. Abusair, M. Sharaf, T. Hamad, R. Dahman and S. AbuOdeh, An approach for queue management systems of non critical services, in 2021 7th International Conference on Information Management (ICIM). London, United Kingdom (2021) 167–171. [Google Scholar]
  • S. Ağralı, Z.C. Ta¸skın and A.T. Ünal, Employee scheduling in service industries with flexible employee availability and demand. Omega 66 (2017) 159–169. [CrossRef] [Google Scholar]
  • H. Aima, R. Adam and H. Ali, Model of employee performance: competence analysis and motivation (case study at PT. Bank Bukopin,Tbk Center). J. Res. Bus. Manage. 4 (2017) 49–59. [Google Scholar]
  • S. Akbari, M. Zandieh and B. Dorri, Scheduling part-time and mixed-skilled workers to maximize employee satisfaction. Int. J. Adv. Manuf. Technol. 64 (2013) 1017–1027. [CrossRef] [Google Scholar]
  • Z. Bahroun, R. As’ad, M. Tanash and R. Athamneh, The multi-skilled resource-constrained project scheduling problem: a systematic review and an exploration of future landscapes. Manage. Syst. Prod. Eng. 32 (2024) 108–132. [Google Scholar]
  • O. Baron, D. Krass, E. Sherzer and A. Senderovich, Can machines solve general queueing problems? in 2022 Winter Simulation Conference (WSC). Singapore (2022) 2830–2841. [Google Scholar]
  • J.J. Bartholdi, A guaranteed-accuracy round-off algorithm for cyclic scheduling and set covering. Oper. Res. 29 (1981) 501–510. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Bürgy, H. Michon-Lacaze and G. Desaulniers, Employee scheduling with short demand perturbations and extensible shifts. Omega 89 (2019) 177–192. [CrossRef] [Google Scholar]
  • X. Cai and K.N. Li, A genetic algorithm for scheduling staff of mixed-skills under multi-criteria. Eur. J. Oper. Res. 125 (2000) 359–369. [CrossRef] [Google Scholar]
  • C.A. Coello, G.B. Lamont and D.A. Van Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems. Springer Science & Business Media (2007). [Google Scholar]
  • T. Dai and J. Li, Staff scheduling in call center considering global service quality, in 12th International Conference on Service Systems and Service Management (ICSSSM). Guangzhou, China (2015) 1–4. [Google Scholar]
  • K. Deb, S. Agrawal, A. Pratap and T. Meyarivan, A fast and Elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6 (2002) 182–197. [CrossRef] [Google Scholar]
  • F.F. Easton, Cross-training performance in flexible labor scheduling environments. IIE Trans. 43 (2011) 589–603. [CrossRef] [Google Scholar]
  • A.T. Ernst, H. Jiang, M. Krishnamoorthy and D. Sier, Staff scheduling and rostering: a review of applications, methods and models. Eur. J. Oper. Res. 153 (2004) 3–27. [Google Scholar]
  • H. Halabian, I. Lambadaris and Y. Viniotis, Optimal server assignment in multi-server queueing systems with random connectivities. J. Commun. Networks 21 (2019) 405–415. [CrossRef] [Google Scholar]
  • C.A. Henao, J.C. Mu˜noz and J.C. Ferrer, The impact of multi-skilling on personnel scheduling in the service sector: a retail industry case. J. Oper. Res. Soc. 66 (2015) 1949–1959. [CrossRef] [Google Scholar]
  • H. Hijry and R. Olawoyin, Predicting patient waiting time in the queue system using deep learning algorithms in the emergency room. Int. J. Ind. Eng. 3 (2021) 49–59. [Google Scholar]
  • Y. Hu, C.W. Chan and J. Dong, Optimal scheduling of proactive service with customer deterioration and improvement. Manage. Sci. 68 (2022) 2533–2578. [CrossRef] [Google Scholar]
  • R. Ibrahim, Personalized scheduling in service systems. Queue. Syst. 100 (2022) 445–447. [CrossRef] [Google Scholar]
  • A. Idris, Flexible working as an employee retention strategy in developing countries: Malaysian bank managers speak. J. Manage. Res. 14 (2014) 71–86. [Google Scholar]
  • L. Kletzander and N. Musliu, Solving the general employee scheduling problem. Comput. Oper. Res. 113 (2020) 104794. [CrossRef] [MathSciNet] [Google Scholar]
  • G.S. Kuaban, R. Kumar, B.S. Soodan and P. Czekalski, A multi-server queuing model with balking and correlated reneging with application in health care management. IEEE Access 8 (2020) 169623–169639. [CrossRef] [Google Scholar]
  • A.I. Kyritsis and M. Deriaz, A machine learning approach to waiting time prediction in queueing scenarios, in Second International Conference on Artificial Intelligence for Industries (AI4I). Laguna Hills, CA, USA (2019) 17–21. [Google Scholar]
  • G. Lee, V.P. Magnini and B.C. Kim, Employee satisfaction with schedule flexibility: psychological antecedents and consequences within the workplace. Int. J. Hospitality Manage. 30 (2011) 22–30. [Google Scholar]
  • B. Lin, Y. Lin and R. Bhatnagar, Optimal policy for controlling two-server queueing systems with jockeying. J. Syst. Eng. Electron. 33 (2022) 144–155. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Liu, The optimization of worker’s quantity based on cross-utilization in many departments. Intell. Decis. Technol. 11 (2017) 15–28. [Google Scholar]
  • Y. Ma, X. Gao, S.S. Bhatti and G. Chen, Clustering based priority queue algorithm for spatial task assignment in crowdsourcing. IEEE Trans. Serv. Comput. 17 (2024) 452–465. [CrossRef] [Google Scholar]
  • V.A. Mabert and J.P. McKenzie, Improving bank operations: a case study at BancOhio/Ohio National Bank. Omega 8 (1980) 345–354. [CrossRef] [Google Scholar]
  • R. Mansini, M. Zanella and R. Zanotti, Optimizing a complex multi-objective personnel scheduling problem jointly complying with requests from customers and staff. Omega 114 (2023) 102722. [CrossRef] [Google Scholar]
  • S. Mattia, F. Rossi, M. Servilio and S. Smriglio, Staffing and scheduling flexible call centers by two-stage robust optimization. Omega 72 (2017) 25–37. [CrossRef] [Google Scholar]
  • Z. Miao, X. Luo, Z. Zhang and Q. Zhou, Service family design optimization considering a multi-server queue. IEEE Access 9 (2021) 51432–51451. [CrossRef] [Google Scholar]
  • Z. Mo, Q. Shao, L. Wu, R. Yu, Q. Liu, J. Xu, H. Song and E. Chen, TGNN: a GNN-based method with multientity node for personal banking time prediction, in Intelligent Networked Things. CINT 2022. Communications in Computer and Information Science, 1714, edited by L. Zhang, W. Yu, H. Jiang and Y. Laili. Springer, Singapore (2022) 2830–2841. [Google Scholar]
  • E.H. Özder, E. Özcan and T. Eren, A systematic literature review for personnel scheduling problems. Int. J. Inf. Technol. Decis. Making 19 (2020) 1695–1735. [CrossRef] [Google Scholar]
  • M. Pinedo, C. Zacharias and N. Zhu, Scheduling in the service industries: an overview. J. Syst. Sci. Syst. Eng. 24 (2015) 1–48. [CrossRef] [Google Scholar]
  • A.F. Porto, C.A. Henao, H. López-Ospina and E.R. González, Hybrid flexibility strategy on personnel scheduling: retail case study. Comput. Ind. Eng. 133 (2019) 220–230. [CrossRef] [Google Scholar]
  • A.L. Puha and A.R. Ward, Scheduling an overloaded multiclass many-server queue with impatient customers, in Operations research & management science in the age of analytics INFORMS. (2019) 189–217. [Google Scholar]
  • J. Soriano, E.R. Jalao and I.A. Martinez, Integrated employee scheduling with known employee demand, including breaks, overtime, and employee preferences. J. Ind. Eng. Manage. 13 (2020) 451–463. [Google Scholar]
  • G.K. Taskiran and X. Zhang, Mathematical models and solution approach for cross-training staff scheduling at call centers. Comput. Oper. Res. 87 (2017) 258–269. [CrossRef] [MathSciNet] [Google Scholar]
  • W. Wang, K. Xie, S. Guo, W. Li, F. Xiao and Z. Liang, A shift-based model to solve the integrated staff rostering and task assignment problem with real-world requirements. Eur. J. Oper. Res. 310 (2023) 360–378. [CrossRef] [Google Scholar]
  • J. Zan, J.J. Hasenbein, D.P. Morton and V. Mehrotra, Staffing call centers under arrival-rate uncertainty with Bayesian updates. Oper. Res. Lett. 46 (2018) 379–384. [CrossRef] [MathSciNet] [Google Scholar]
  • N. Zychlinski, Applications of fluid models in service operations management. Queue. Syst. 103 (2023) 161–185. [CrossRef] [Google Scholar]
  • N. Zychlinski, C.W. Chan and J. Dong, Managing queues with different resource requirements. Oper. Res. 71 (2023) 1387–1413. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.