Open Access
Issue
RAIRO-Oper. Res.
Volume 59, Number 1, January-February 2025
Page(s) 239 - 249
DOI https://doi.org/10.1051/ro/2024218
Published online 16 January 2025
  • N. Baghirova, C.L. Gonzalez, B. Ries and D. Schindl, Locally checkable problems parameterized by Clique-Width, in 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), edited by S.W. Bae and H. Park. Vol. 248. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2022) 31:1–31:20. https://drops.dagstuhl.de/opus/volltexte/2022/17316. [Google Scholar]
  • J. Bondy and U. Murty, Graph Theory, edition. Springer Publishing Company, Incorporated (2008). [CrossRef] [Google Scholar]
  • M. Chellali, T. Haynes, S. Hedetniemi and A. McRae, Roman {2}-domination. Discrete Appl. Math. 204 (2016) 22–28. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Chen and C. Lu, Roman {2}-domination problem in graphs. Discuss. Math. Graph Theory 42 (2022) 641–660. [Google Scholar]
  • Y.J. Cheng, H.L. Fu and C.A. Liu, The integer {k}-domination number of circulant graph. Discrete Math. Algorithms App. 12 (2020) 2050055. [CrossRef] [Google Scholar]
  • D. Corneil, H. Lerchs and L. Stewart-Burlingham, Complement reducible graphs. Discrete Appl. Math. 3 (1981) 163–174. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Dobson, V. Leoni and M.L. Pujato, k-tuple and k-tuple total dominations on web graphs. Matemática Contemporânea 48 (2021) 31–41. [Google Scholar]
  • G.S. Domke, S.T. Hedetniemi, R.C. Laskar and G. Fricke, Relationships between integer and fractional parameters of graphs, in Graph Theory Combinatorics and Applications. Vol. 1. Wiley Interscience Publication (1991) 371–387. [Google Scholar]
  • L. Fernández and V. Leoni, New complexity results on Roman {2}-domination in graphs. RAIRO-Oper. Res. 57 (2023) 1905–1912. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • L. Fernández and V. Leoni, Roman {2}-domination on graphs with “few” 4-paths. Manuscript (2024). [Google Scholar]
  • J. Fink and M. Jacobson, n-domination in graphs, in Graph Theory with Applications to Algorithms and Computer Science. John Wiley and Sons, New York (1985) 283–300. [Google Scholar]
  • M. Henning and W. Klostermeyer, Italian domination in trees. Discrete Appl. Math. 217 (2017) 557–564. [CrossRef] [MathSciNet] [Google Scholar]
  • W. Klostermeyer and G. MacGillivray, Roman, Italian, and 2-domination. J. Comb. Math. Comb. Comput. 108 (2019) 125–146. [Google Scholar]
  • C. Lee and M. Chang, Variations of y-dominating functions on graphs. Discrete Math. 308 (2008) 4185–4204. [CrossRef] [MathSciNet] [Google Scholar]
  • C. Padamutham and V.S.R. Palagiri, Complexity of Roman {2}-domination and the double Roman domination in graphs. AKCE Int. J. Graphs Comb. 17 (2020) 1081–1086. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Poureidi and N.J. Rad, On the algorithmic complexity of Roman {2}-domination (italian domination) research paper. Iran. J. Sci. Technol. 44 (2020) 791–799. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Trotter, A class of facet producing graphs for vertex packing polyhedra. Discrete Math. 12 (1975) 373–388. [CrossRef] [MathSciNet] [Google Scholar]
  • J.H. Yan, J.J. Chen and G. Chang, Quasi-threshold graphs. Discrete Appl. Math. 69 (1996) 247–255. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.