Open Access
Issue |
RAIRO-Oper. Res.
Volume 59, Number 1, January-February 2025
|
|
---|---|---|
Page(s) | 625 - 652 | |
DOI | https://doi.org/10.1051/ro/2024174 | |
Published online | 25 February 2025 |
- A. Charnes, W.W Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. [CrossRef] [Google Scholar]
- E. Thanassoulis, M.C.S. Portela and O. Despic, Data envelopment analysis: the mathematical programming approach to efficiency analysis, in The Measurement of Productive Efficiency and Productivity Growth. Oxford University Press, Oxford, NY (2008) 251–420. [CrossRef] [Google Scholar]
- W.D. Cook, K. Tone and J. Zhu, Data envelopment analysis: prior to choosing a model. Omega 44 (2014) 1–4. [Google Scholar]
- S. Lozano and L. Calzada-Infante, Computing gradient-based stepwise benchmarking paths. Omega 81 (2018) 195– 207. [CrossRef] [Google Scholar]
- N. Ramón, J.L. Ruiz and I. Sirvent, Cross-benchmarking for performance evaluation: looking across best practices of different peer groups using DEA. Omega 92 (2020) 102169. [CrossRef] [Google Scholar]
- J.L. Ruiz and I. Sirvent, Searching for alternatives to the closest targets: identifying new directions for improvement while controlling additional efforts. J. Oper. Res. Soc. 72 (2021) 2770–2782. [CrossRef] [Google Scholar]
- S. Lozano and G. Villa, Gradual technical and scale efficiency improvement in DEA. Ann. Oper. Res. 173 (2010) 123–136. [CrossRef] [MathSciNet] [Google Scholar]
- J. Zhu, Quantitative Models for Performance Evaluation and Benchmarking: Data Envelopment Analysis with Spreadsheets. Vol. 2. Springer (2009). [CrossRef] [Google Scholar]
- S. Lim, H. Bae and L.H. Lee, A study on the selection of benchmarking paths in DEA. Expert Syst. App. 38 (2011) 7665–7673. [CrossRef] [Google Scholar]
- N. Ramón, J.L. Ruiz and I. Sirvent, Two-step benchmarking: setting more realistically achievable targets in DEA. Expert Syst. App. 92 (2018) 124–131. [CrossRef] [Google Scholar]
- G.R. Jahanshahloo, F.H. Lotfi, H.Z. Rezai and F.R. Balf, Finding strong defining hyperplanes of production possi- bility set. Eur. J. Oper. Res. 177 (2007) 42–54. [CrossRef] [Google Scholar]
- G.R. Jahanshahloo, A. Shirzadi and S.M. Mirdehghan, Finding strong defining hyperplanes of PPS using multiplier form. Eur. J. Oper. Res. 194 (2009) 933–938. [CrossRef] [Google Scholar]
- K. Tone, Variations on the theme of slacks-based measure of efficiency in DEA. Eur. J. Oper. Res. 200 (2010) 901–907. [CrossRef] [Google Scholar]
- F.H. Lotfi, G.R. Jahanshahloo, M.R. Mozaffari and J. Gerami, Finding DEA-efficient hyperplanes using molp efficient faces. J. Comput. Appl. Math. 235 (2011) 1227–1231. [CrossRef] [MathSciNet] [Google Scholar]
- A. Amirteimoori and S. Kordrostami, Generating strong defining hyperplanes of the production possibility set in data envelopment analysis. Appl. Math. Lett. 25 (2012) 605–609. [CrossRef] [MathSciNet] [Google Scholar]
- J. Aparicio, J.L. Ruiz and I. Sirvent, Closest targets and minimum distance to the pareto-efficient frontier in DEA. J. Prod. Anal. 28 (2007) 209–218. [CrossRef] [Google Scholar]
- J.L. Ruiz, J.V. Segura and I. Sirvent, Benchmarking and target setting with expert preferences: an application to the evaluation of educational performance of Spanish universities. Eur. J. Oper. Res. 242 (2015) 594–605. [CrossRef] [Google Scholar]
- Q. Zhu, J. Wu, X. Ji and F. Li, A simple MILP to determine closest targets in non-oriented DEA model satisfying strong monotonicity. Omega 79 (2018) 1–8. [CrossRef] [Google Scholar]
- J. Aparicio, J.M. Cordero and J.T. Pastor, The determination of the least distance to the strongly efficient frontier in data envelopment analysis oriented models: modelling and computational aspects. Omega 71 (2017) 1–10. [CrossRef] [Google Scholar]
- J.L. Ruiz and I. Sirvent, Common benchmarking and ranking of units with DEA. Omega 65 (2016) 1–9. [CrossRef] [Google Scholar]
- W.D. Cook, J.L. Ruiz, I. Sirvent and J. Zhu, Within-group common benchmarking using DEA. Eur. J. Oper. Res. 256 (2017) 901–910. [CrossRef] [Google Scholar]
- J. Wu, J.-F. Chu and L. Liang, Target setting and allocation of carbon emissions abatement based on DEA and closest target: an application to 20 APEC economies. Nat. Hazards 84 (2016) 279–296. [CrossRef] [Google Scholar]
- W.D. Cook, N. Ramón, J.L. Ruiz, I. Sirvent and J. Zhu, DEA-based benchmarking for performance evaluation in pay-for-performance incentive plans. Omega 84 (2019) 45–54. [CrossRef] [Google Scholar]
- J.L. Ruiz and I. Sirvent, Performance evaluation through DEA benchmarking adjusted to goals. Omega 87 (2019) 150–157. [CrossRef] [Google Scholar]
- J.L. Ruiz and I. Sirvent, Identifying suitable benchmarks in the way toward achieving targets using data envelopment analysis. Int. Trans. Oper. Res. 29 (2022) 1749–1768. [CrossRef] [Google Scholar]
- L.M. Seiford and J. Zhu, Context-dependent data envelopment analysis-measuring attractiveness and progress. Omega 31 (2003) 397–408. [CrossRef] [Google Scholar]
- J. Wu, Y. Yu, Q. Zhu, Q. An and L. Liang, Closest target for the orientation-free context-dependent DEA under variable returns to scale. J. Oper. Res. Soc. 69 (2018) 1819–1833. [CrossRef] [Google Scholar]
- H.-B. Kwon, J.H. Marvel and J.J. Roh, Three-stage performance modeling using DEA–BPNN for better practice benchmarking. Expert Syst. App. 71 (2017) 429–441. [CrossRef] [Google Scholar]
- N.H. Kim, F. He, R.M. Nasir and S.-I. Kwak, Stepwise benchmarking based on production function: selecting path towards closest target. Expert Syst. App. 228 (2023) 120308. [CrossRef] [Google Scholar]
- Z. Ji, X. Wu, X. Chen, W. Zhou and M. Song, Finding green performance targets globally closest to management goals for ports experiencing similar circumstances. Res. Policy 85 (2023) 103897. [CrossRef] [Google Scholar]
- Z. Ji, X. Wu, J. Guo and G. Wei, Goal-oriented common benchmarking based on global and stepwise reallocation: an application to 18 ports in Korea. Expert Syst. App. 240 (2024) 122462. [CrossRef] [Google Scholar]
- Q. An, X. Tao, B. Dai and B. Xiong, Bounded-change target-setting approach: selection of a realistic benchmarking path. J. Oper. Res. Soc. 72 (2021) 663–677. [CrossRef] [Google Scholar]
- N. Nasrabadi, A. Dehnokhalaji, P. Korhonen and J. Wallenius, A stepwise benchmarking approach to DEA with interval scale data. J. Oper. Res. Soc. 70 (2019) 954–961. [CrossRef] [Google Scholar]
- A. Dehnokhalaji and N. Soltani, Gradual efficiency improvement through a sequence of targets. J. Oper. Res. Soc. 70 (2019) 2143–2152. [CrossRef] [Google Scholar]
- M. Kadziński, M. Stamenković and M. Uniejewski, Stepwise benchmarking for multiple criteria sorting. Omega 108 (2022) 102579. [CrossRef] [Google Scholar]
- R.D. Banker, A. Charnes and W.W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manage. Sci. 30 (1984) 1078–1092. [Google Scholar]
- R. F¨are, S. Grosskopf and C.A. Pasurka Jr., Environmental production functions and environmental directional distance functions. Energy 32 (2007) 1055–1066. [CrossRef] [Google Scholar]
- T. Kuosmanen, Weak disposability in nonparametric production analysis with undesirable outputs. Am. J. Agric. Econ. 87 (2005) 1077–1082. [CrossRef] [Google Scholar]
- K. Tone, A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 130 (2001) 498–509. [Google Scholar]
- W.B. Liu, W. Meng, X.X. Li and D.Q. Zhang, DEA models with undesirable inputs and outputs. Ann. Oper. Res. 173 (2010) 177–194. [CrossRef] [MathSciNet] [Google Scholar]
- Y.-T. Chang, Environmental efficiency of ports: a data envelopment analysis approach, in Ports and the Environment. Routledge (2017) 77–88. [Google Scholar]
- V. Chang and B. Tovar, Metafrontier analysis on productivity for west coast of south pacific terminals. Transp. Res. Part A: Policy Pract. 103 (2017) 118–134. [CrossRef] [Google Scholar]
- B. Tovar and A. Wall, Are larger and more complex port more productive? An analysis of Spanish port authorities. Transp. Res. Part A: Policy Pract. 121 (2019) 265–276. [CrossRef] [Google Scholar]
- L. Wang, Z. Zhou, Y. Yang and J. Wu, Green efficiency evaluation and improvement of Chinese ports: a cross- efficiency model. Transp. Res. Part D: Transp. Environ. 88 (2020) 102590. [CrossRef] [Google Scholar]
- J. Aparicio, F. Borras, J.T. Pastor and F. Vidal, Measuring and decomposing firm’s revenue and cost efficiency: the Russell measures revisited. Int. J. Prod. Econ. 165 (2015) 19–28. [CrossRef] [Google Scholar]
- F.S. Piran, D.P. Lacerda, A.S. Camanho and M.C.A. Silva, Internal benchmarking to assess the cost efficiency of a broiler production system combining data envelopment analysis and throughput accounting. Int. J. Prod. Econ. 238 (2021) 108173. [CrossRef] [Google Scholar]
- S. Lozano and N. Soltani, Efficiency assessment using a multidirectional DDF approach. Int. Trans. Oper. Res. 27 (2020) 2064–2080. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.