Open Access
Issue |
RAIRO-Oper. Res.
Volume 59, Number 1, January-February 2025
|
|
---|---|---|
Page(s) | 549 - 578 | |
DOI | https://doi.org/10.1051/ro/2024162 | |
Published online | 14 February 2025 |
- A. Aliano Filho, H. Oliveira Florentino, M.V. Pato, S.C. Poltroniere and J.F.S. Costa, Exact and heuristic methods to solve a bi-objective problem of sustainable cultivation. Ann. Oper. Res. 314 (2022) 347–376. [CrossRef] [MathSciNet] [Google Scholar]
- A. Aliano Filho, W.A. Oliveira and T. Melo, Multi-objective optimization for integrated sugarcane cultivation and harvesting planning. Eur. J. Oper. Res. 309 (2023) 330–344. [CrossRef] [Google Scholar]
- M. Alinaghian, E.B. Tirkolaee, Z.K. Dezaki, S.R. Hejazi and W. Ding, An augmented Tabu search algorithm for the green inventory-routing problem with time windows. Swarm Evol. Comput. 60 (2021) 100802. [CrossRef] [Google Scholar]
- N. Alkawaleet, Y.-F. Hsieh and Y. Wang, Inventory routing problem with CO2 emissions consideration. In: Logistics Operations, Supply Chain Management and Sustainability. Springer, Cham (2014) 611–619 [CrossRef] [Google Scholar]
- A. Alvarez, P. Munari and R. Morabito, Iterated local search and simulated annealing algorithms for the inventory routing problem. ITOR 25 (2018) 1785–1809. [Google Scholar]
- A. Alvarez, J.-F. Cordeau, R. Jans, P. Munari and R. Morabito, Formulations, branch-and-cut and a hybrid heuristic algorithm for an inventory routing problem with perishable products. Eur. J. Oper. Res. 283 (2020) 511–529. [CrossRef] [MathSciNet] [Google Scholar]
- C. Archetti and I. Ljubić, Comparison of formulations for the inventory routing problem. Eur. J. Oper. Res. 303 (2022) 997–1008. [CrossRef] [Google Scholar]
- C. Archetti, L. Bertazzi, G. Laporte and M. Grazia Speranza, A branch-and-cut algorithm for a vendor-managed inventory-routing problem. Transp. Sci. 41 (2007) 382–391. [CrossRef] [Google Scholar]
- C. Archetti, M. Grazia Speranza, M. Boccia, A. Sforza and C. Sterle, A branch-and-cut algorithm for the inventory routing problem with pickups and deliveries. Eur. J. Oper. Res. 282 (2020) 886–895. [CrossRef] [Google Scholar]
- M. Asghari and S.M.J. Mirzapour Al-e-hashem, Green vehicle routing problem: a state-of-the-art review. Int. J. Prod. Econ. 231 (2021) 107899. [CrossRef] [Google Scholar]
- G. Aydin, I. Karakurt and K. Aydiner, Evaluation of geologic storage options of CO2: applicability, cost, storage capacity and safety. Energy Policy 38 (2010) 5072–5080. [CrossRef] [Google Scholar]
- T. Balamurugan, L.K. Karunamoorthy, N. Arunkumar and D. Santhosh, Optimization of inventory routing problem to minimize carbon dioxide emission. Int. J. Simul. Model. 17 (2018) 42–54. [CrossRef] [Google Scholar]
- M. Barth, T. Younglove and G. Scora, Development of a heavy-duty diesel modal emissions and fuel consumption model, California PATH Research report (2005). [Google Scholar]
- T. Bekta¸s and G. Laporte, The pollution-routing problem. Transp. Res. Part B Methodol. 45 (2011) 1232–1250. [CrossRef] [Google Scholar]
- J. Bell Walter, L.M. Dalberto, M.L. Fisher, R. Greenfield, R. Jaikumar and P. Kedia, Improving the distribution of industrial gases with an on-line computerized routing and scheduling optimizer. Interfaces 6 (1983) 4–23. [Google Scholar]
- S. Benjaafar, Y. Li and M. Daskin, Carbon footprint and the management of supply chains: insights from simple models. IEEE Trans. Autom. Sci. Eng. 10 (2012) 99–116. [Google Scholar]
- L. Bertazzi and M. Grazia Speranza, Inventory routing problems: an introduction. EURO J. Transp. Logist. 1 (2012) 307–326. [CrossRef] [Google Scholar]
- J.E.H. Branco, D.B. Bartholomeu, P.N.A. Junior and J.V.C. Filho, Evaluation of the economic and environmental impacts from the addition of new railways to the Brazilian’s transportation network: an application of a network equilibrium model, Transp. Policy 124 (2022) 61–69. [CrossRef] [Google Scholar]
- W.-R. Bretzke, Sustainable logistics: in search of solutions for a challenging new problem. Logist. Res. 3 (2011) 179–189. [CrossRef] [Google Scholar]
- G.P. Cachon, Retail store density and the cost of greenhouse gas emissions. Manag. Sci. 60 (2014) 1907–1925. [CrossRef] [Google Scholar]
- C. Cheng, P. Yang, M. Qi and L.-M. Rousseau, Modeling a green inventory routing problem with a heterogeneous fleet. Transp. Res. Part E Logist. Transp. Rev. 97 (2017) 97–112. [CrossRef] [Google Scholar]
- C. Cheng, M. Qi and L.-M. Rousseau, Fuel consumption optimization model for the multi-period inventory routing problem. Transp. Res. Rec. 2672 (2018) 59–69. [CrossRef] [Google Scholar]
- L.C. Coelho and G. Laporte, A branch-and-cut algorithm for the multi-product multi-vehicle inventory-routing problem. Int. J. Prod. Res. 51 (2013) 7156–7169. [CrossRef] [Google Scholar]
- L. Coelho, J.-F. Cordeau and G. Laporte, Thirty years of inventory routing. Transp. Sci. 48 (2013) 1–19. [Google Scholar]
- Y. Collette and P. Siarry, Multiobjective Optimization: Principles and Case Studies. Springer Science & Business Media, Heidelberg (2004). [CrossRef] [Google Scholar]
- P.M. Cox and M.S. Williamson, Emergent constraint on equilibrium climate sensitivity from global temperature variability. Nature 553 (2018) 319–322. [CrossRef] [PubMed] [Google Scholar]
- M. Darvish, C. Archetti and L.C. Coelho, Trade-offs between environmental and economic performance in production and inventory-routing problems. Int. J. Prod. Econ. 217 (2019) 269–280. [CrossRef] [Google Scholar]
- E. Deakin, Sustainable development and sustainable transportation: strategies for economic prosperity, environmental quality, and equity. IURD Working Paper Series (2001). [Google Scholar]
- R. Dekker, J. Bloemhof and I. Mallidis, Operations research for green logistics–an overview of aspects, issues, contributions and challenges. Eur. J. Oper. Res. 219 (2012) 671–679. [CrossRef] [Google Scholar]
- E. Demir, T. Bekta¸s and G. Laporte, A comparative analysis of several vehicle emission models for road freight transportation. Transp. Res. Part D Transp. Environ. 16 (2011) 347–357. [CrossRef] [Google Scholar]
- E. Demir, T. Bekta¸s and G. Laporte, An adaptive large neighborhood search heuristic for the pollution-routing problem. Eur. J. Oper. Res. 223 (2012) 346–359. [CrossRef] [Google Scholar]
- B.K. Dey, J. Park and H. Seok, Carbon-emission and waste reduction of a manufacturing-remanufacturing system using green technology and autonomated inspection. RAIRO-OR 56 (2022) 2801–2831. [CrossRef] [EDP Sciences] [Google Scholar]
- K.M. Ferreira, T.A. de Queiroz and F.M.B. Toledo, An exact approach for the green vehicle routing problem with two-dimensional loading constraints and split delivery. Comput. Oper. Res. 136 (2021) 105452. [CrossRef] [Google Scholar]
- C. Franco, E.R. López-Santana and G. Méndez-Giraldo, A column generation approach for solving a green bi-objective inventory routing problem. In: Advances in Artificial Intelligence - IBERAMIA 2016. Springer International Publishing, Cham (2016) 101–112. [Google Scholar]
- F. Goodarzian, V. Kumar and P. Ghasemi, Investigating a citrus fruit supply chain network considering CO2 emissions using meta-heuristic algorithms. Ann. Oper. Res. (2022). DOI: 10.1007/s10479-022-05005-7. [Google Scholar]
- Y. Haimes, On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans. Syst. Man Cybern. 3 (1971) 296–297. [Google Scholar]
- J.S. Hoffman, P.U. Clark, A.C. Parnell and F. He, Regional and global sea-surface temperatures during the last interglaciation. Science 355 (2017) 276–279. [CrossRef] [PubMed] [Google Scholar]
- J.L. Jiménez, J. Valido and N. Molden, The drivers behind differences between official and actual vehicle efficiency and CO2 emissions. Transp. Res. Part D Transp. Environ. 67 (2019) 628–641. [CrossRef] [Google Scholar]
- P. Karakostas, A. Sifaleras and M.C. Georgiadis, Adaptive variable neighborhood search solution methods for the fleet size and mix pollution location-inventory-routing problem. Expert Syst. Appl. 153 (2020) 113444. [CrossRef] [Google Scholar]
- V. Kishore Ayyadevara, Pro Machine Learning Algorithms. Apress, Berkeley, Springer (2018). [CrossRef] [Google Scholar]
- C. Koc, T. Bektas, O. Jabali and G. Laporte, The fleet size and mix pollution-routing problem. Transp. Res. Part B Methodol. 70 (2014) 239–254. [CrossRef] [Google Scholar]
- M. Kumari, P.K. De, P. Narang and N.H. Shah, Integrated optimization of inventory, replenishment, and vehicle routing for a sustainable supply chain utilizing a novel hybrid algorithm with carbon emission regulation. Expert Syst. Appl. 220 (2023) 119667. [CrossRef] [Google Scholar]
- Y.-F. Lin, T.-Y. Chang, W.-R. Su and R.-K. Shang, IoT for environmental management and security governance: an integrated project in Taiwan. Sustainability 14 (2022) 217. [Google Scholar]
- Z. Liu, P. Ciais, Z. Deng, R. Lei, S.J. Davis, S. Feng, B. Zheng, D. Cui, X. Dou, B. Zhu and R. Guo, Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nat. commun. 11 (2020) 1–12. [CrossRef] [MathSciNet] [Google Scholar]
- B. Mahesh, Machine learning algorithms-a review. Int. J. Sci. Res. (IJSR) 9 (2020) 381–386. [CrossRef] [Google Scholar]
- E.B. Mariano, J.A. Gobbo Jr., F. de Castro Camioto and D.A. do Nascimento Rebelatto, CO2 emissions and logistics performance: a composite index proposal. J. Clean. Prod. 163 (2017) 166–178. [CrossRef] [Google Scholar]
- G. Mavrotas, Effective implementation of the e-constraint method in multi-objective mathematical programming problems. Appl. Math. Comput. 213 (2009) 455–465. [MathSciNet] [Google Scholar]
- G.J.L. Micheli and F. Mantella, Modelling an environmentally-extended inventory routing problem with demand uncertainty and a heterogeneous fleet under carbon control policies. Int. J. Prod. Econ. 204 (2018) 316–327. [CrossRef] [Google Scholar]
- F. Misni, L.S. Lee and N.I. Jaini, Multi-objective hybrid harmony search-simulated annealing for location-inventory-routing problem in supply chain network design of reverse logistics with CO2 emission. J. Phys. Conf. Ser. 1 (2021) 012054. [CrossRef] [Google Scholar]
- A.A.S. Mundim, M.O. Santos and R. Morabito, Sustainable solutions analysis of a bi-objective green inventory routing problem with heterogeneous fleet and different types of fuels. RAIRO-OR 59 (2025). Available at: https://github.com/ariannesilvamundim/RAIRO-OR. Accessed on: January 30, 2025. [Google Scholar]
- Natural Resources Canada, Learn the Facts: Fuel Consumption and CO2. Government of Canada (2014). [Google Scholar]
- N. Niroomand, C. Bach and M. Elser, Segment-based CO2 emission evaluations from passenger cars based on deep learning techniques. IEEE Access 9 (2021) 166314–166327. [CrossRef] [Google Scholar]
- R.K. Pachauri and L.A. Meyer, IPCC, 2014: Climate Change 2014. In: Intergovernmental Panel on Climate Change (2014). [Google Scholar]
- G. Pinto and M.T. Oliver-Hoyo, Using the relationship between vehicle fuel consumption and CO2 emissions to illustrate chemical principles. J. Chem. Educ. 85 (2008) 218. [CrossRef] [Google Scholar]
- L. Qin, L. Miao, Q. Ruan and Y. Zhang, A local search method for periodic inventory routing problem. Expert Syst. Appl. 41 (2014) 765–778. [CrossRef] [Google Scholar]
- M. Rabbani, K.R. Mokarrari and N. Akbarian-saravi, A multi-objective location inventory routing problem with pricing decisions in a sustainable waste management system. Sustaina. Cities Soc. 75 (2021) 103319. [CrossRef] [Google Scholar]
- M. Rahbari, B. Naderi and M. Mohammadi, Modelling and solving the inventory routing problem with CO2 emissions consideration and transshipment option. Environ. Process. 5 (2018) 649–665. [CrossRef] [Google Scholar]
- M. Rahbari, B. Naderi and M. Mohammadi, Modeling a multi-objective green inventory-routing problem with transshipment option. In: 14th International Industrial Engineering Conference (IIEC 2018). Tehran, Iran (2018). [Google Scholar]
- M. Rahbari, A.A. Khamseh, Y. Sadati-Keneti and M.J. Jafari, A risk-based green location-inventory-routing problem for hazardous materials: NSGA II, MOSA, and multi-objective black widow optimization. Environ. Dev. Sustain. 24 (2022) 2804–2840. [CrossRef] [Google Scholar]
- C.M. Schenekemberg, T.A. Guimar˜aes, A.A. Chaves and L.C. Coelho, A three-front parallel branch-and-cut algorithm for production and inventory routing problems. Transp. Sci. 58 (2023) 687–707. [Google Scholar]
- S. Seuring, A review of modeling approaches for sustainable supply chain management. Dec. Support Syst. 54 (2013) 1513–1520. [CrossRef] [Google Scholar]
- Y. Shi, Multiple Criteria and Multiple Constraint Levels Linear Programming: Concepts, Techniques and Applications. World Scientific Publishing Company, Singapore (2001) [CrossRef] [Google Scholar]
- R. Smokers, L. Tavasszy, M. Chen and E. Guis, Options for Competitive and Sustainable Logistics. Emerald Group Publishing Limited (2014) [Google Scholar]
- M. Soysal, J.M. Bloemhof-Ruwaard, R. Haijema and J.G.A.J. van der Vorst, Modeling an inventory routing problem for perishable products with environmental considerations and demand uncertainty. Int. J. Prod. Econ. 164 (2015) 118–133. [CrossRef] [Google Scholar]
- M. Soysal, M. Çimen, S. Belbağ and E. Toğrul, A review on sustainable inventory routing. Comput. Ind. Eng. 132 (2019) 395–411. [Google Scholar]
- H.M. Stellingwerf, G. Laporte, F.C.A.M. Cruijssen, A. Kanellopoulos and J.M. Bloemhof, Quantifying the environmental and economic benefits of cooperation: a case study in temperature-controlled food logistics. Transp. Res. Part D Transp. Environ. 65 (2018) 178–193. [CrossRef] [Google Scholar]
- J. Tollefson, COVID curbed carbon emissions in 2020 - but not by much. Nature 589 (2021) 343. [CrossRef] [PubMed] [Google Scholar]
- S. Treitl, P.C. Nolz, W. Jammernegg, Incorporating environmental aspects in an inventory routing problem. A case study from the petrochemical industry, Flex. Serv. Manuf. J. 26 (2014) 143–169. [CrossRef] [Google Scholar]
- Q. Wang and F. Zhang, The effects of trade openness on decoupling carbon emissions from economic growth–evidence from 182 countries. J. Clean. Prod. 279 (2021) 123838. [CrossRef] [Google Scholar]
- C. Wang, W. Cai, X. Lu and J. Chen, CO2 mitigation scenarios in China’s road transport sector. Energy Convers. Manag. 48 (2007) 2110–2118. [CrossRef] [Google Scholar]
- Y. Wen, R. Wu, Z. Zhou, S. Zhang, S. Yang, T.J. Wallington, W. Shen, Q. Tan, Y. Deng and Y. Wu, A data-driven method of traffic emissions mapping with land use random forest models. Appl. Energy 305 (2022) 117916. [CrossRef] [Google Scholar]
- R. Wu and Z. Xie, Identifying the impacts of income inequality on CO2 emissions: empirical evidences from OECD countries and non-OECD countries. J. Clean. Prod. 277 (2020) 123858. [CrossRef] [Google Scholar]
- W. Wu, W. Zhou, Y. Lin, Y. Xie and W. Jin, A hybrid metaheuristic algorithm for location inventory routing problem with time windows and fuel consumption. Expert Syst. Appl. 166 (2021) 114034. [CrossRef] [Google Scholar]
- Y. Xiao, Q. Zhao, I. Kaku and Y. Xu, Development of a fuel consumption optimization model for the capacitated vehicle routing problem. Comput. Oper. Res. 39 (2012) 1419–1431. [CrossRef] [MathSciNet] [Google Scholar]
- L. Xu, C. Wang, Z. Miao and J. Chen, Governmental subsidy policies and supply chain decisions with carbon emission limit and consumer’s environmental awareness. RAIRO-OR 53 (2019) 1675–1689. [CrossRef] [EDP Sciences] [Google Scholar]
- D. Zhang, R. He, S. Li and Z. Wang, A multimodal logistics service network design with time windows and environmental concerns. PLOS ONE 12 (2017) e0185001. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.