Open Access
Issue |
RAIRO-Oper. Res.
Volume 59, Number 1, January-February 2025
|
|
---|---|---|
Page(s) | 579 - 586 | |
DOI | https://doi.org/10.1051/ro/2024233 | |
Published online | 14 February 2025 |
- D. Bauer, F. Harary, J. Nieminen and C. Suffel, Domination alternation sets in graphs. Discrete Math. 47 (1983) 153–161. [CrossRef] [MathSciNet] [Google Scholar]
- R. Brigham, P. Chinn and R. Dutton, Vertex domination-critical graphs. Networks 18 (1988) 173–179. [CrossRef] [MathSciNet] [Google Scholar]
- T. Burton and D. Sumner, Domination dot-critical graphs. Discrete Math. 306 (2006) 11–18. [CrossRef] [MathSciNet] [Google Scholar]
- M. Dettlaff, J. Raczek and J. Topp, Domination subdivision and domination multisubdivision numbers of graphs. Discuss. Math. Graph Theory 39 (2019) 829–839. [CrossRef] [MathSciNet] [Google Scholar]
- G.S. Domke, J.H. Hattingh, S.T. Hedetniemi, R.C. Laskar and L.R. Markus, Restrained domination in graphs. Discrete Math. 203 (1999) 61–69. [Google Scholar]
- M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979). [Google Scholar]
- P.J.P. Grobler and C.M. Mynhardt, Secure domination critical graphs. Discrete Math. 309 (2009) 5820–5827. [CrossRef] [MathSciNet] [Google Scholar]
- M. Hajian and N. Jafari Rad, On the Roman domination stable graphs. Discuss. Math. Graph Theory 37 (2017) 859–871. [CrossRef] [MathSciNet] [Google Scholar]
- M.A. Henning and N. Jafari Rad, Total domination critical graphs of high connectivity. Discrete Appl. Math. 157 (2009) 1969–1973. [CrossRef] [MathSciNet] [Google Scholar]
- T. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998). [Google Scholar]
- R.W. Hung and M.J. Chiu, The restrained domination and independent restrained domination in extending supergrid graphs, in Computing and Combinatorics. COCOON 2021. Lecture Notes in Computer Science, edited by C.Y. Chen, W.K. Hon, L.J. Hung and C.W. Lee. Vol. 13025. Springer, Cham (2021). [Google Scholar]
- N. Jafari Rad, E. Sharifi and M. Krzywkowski, Domination stability in graphs. Discrete Math. 339 (2016) 1909–1914. [CrossRef] [MathSciNet] [Google Scholar]
- K. Kayathri and G. Kokilambal, Restrained domination polynomial in graphs. J. Discrete Math. Sci. Cryptogr. 22 (2019) 761–775. [CrossRef] [MathSciNet] [Google Scholar]
- S. Khelifi and M. Chellali, Double domination critical and stable graphs upon vertex removal. Discuss. Math. Graph Theory 32 (2012) 643–657. [CrossRef] [MathSciNet] [Google Scholar]
- D. Lichtenstein, Planar formulae and their uses. SIAM J. Comput. 11 (1982) 329–343. [CrossRef] [MathSciNet] [Google Scholar]
- D.A. Mojdeh, P. Firoozi and R. Hasni, On connected (γ, k)-critical graphs. Aus. J. Comb. 46 (2010) 25–36. [Google Scholar]
- D.A. Mojdeh, S.R. Musawi and E. Nazari, Domination critical Knodel graphs. Iran. J. Sci. Tech. Trans. A: Sci. 43 (2019) 2423–2428. [CrossRef] [Google Scholar]
- C. Moore and S. Mertens, Symmetry-breaking and NAESAT, in The Nature of Computation. Oxford University Press (2011) 133–138. [Google Scholar]
- B.M.E. Moret, Planar NAE3SAT is in P. ACM SIGACT News 19 (1988) 51–54. [CrossRef] [Google Scholar]
- S.A. Omega and S.R. Canoy Jr., Restrained locating-domination in graphs. Int. J. Math. Anal. 9 (2015) 1129–1140. [CrossRef] [Google Scholar]
- V. Samodivkin, Changing and unchanging of the domination number of a graph. Discrete Math. 308 (2008) 5015–5025. [CrossRef] [MathSciNet] [Google Scholar]
- T.J. Schaefer, The complexity of satisfiability problems, in Proceedings of the 10th Annual ACM Symposium on Theory of Computing. ACM (1978) 216–226. [Google Scholar]
- D. Sumner and P. Blitch, Domination critical graphs. J. Combin. Theory Ser. B 34 (1983) 65–76. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.