Open Access
Issue
RAIRO-Oper. Res.
Volume 59, Number 2, March-April 2025
Page(s) 877 - 906
DOI https://doi.org/10.1051/ro/2024193
Published online 31 March 2025
  • A. Amini, A multi-criteria group decision making approach for rural industrial site selection using fuzzy TOPSIS in central Iran. Soc. Econ. Geogr. 1 (2015) 44–54. [Google Scholar]
  • M. Ariani, A. Hervani and P. Setyanto, Climate smart agriculture to increase productivity and reduce greenhouse gas emission – a preliminary study, in IOP Conference Series: Earth and Environmental Science. Vol. 200. IOP Publishing (2018) 012024. [Google Scholar]
  • H. Arora and A. Naithani, Significance of TOPSIS approach to MADM in computing exponential divergence measures for pythagorean fuzzy sets. Decis. Making App. Manage. Eng. 5 (2022) 246–263. [Google Scholar]
  • S. Ashraf, S. Abdullah and T. Mahmood, Spherical fuzzy Dombi aggregation operators and their application in group decision making problems. J. Ambient Intell. Human. Comput. 11 (2020) 2731–2749. [Google Scholar]
  • K.T. Atanassov and S. Stoeva, Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20 (1986) 87–96. [CrossRef] [Google Scholar]
  • B. Banik, A. Chakraborty, A. Barman and S. Alam, Multi-method approach for new vehicle purchasing problem through MCGDM technique under cylindrical neutrosophic environment. Soft Computing (2024) 1–17. [Google Scholar]
  • P. Biswas, S. Pramanik and B.C. Giri, Cosine similarity measure based multi-attribute decision-making with trapezoidal fuzzy neutrosophic numbers. Neutrosophic Sets Syst. 8 (2015) 46–56. [Google Scholar]
  • P. Biswas, S. Pramanik and B.C. Giri, Aggregation of triangular fuzzy neutrosophic set information and its application to multi-attribute decision making. Neutrosophic Sets Syst. 12 (2016) 20–40. [Google Scholar]
  • J. Blank and K. Deb, PYMOO: multi-objective optimization in python. IEEE Access 8 (2020) 89497–89509. [CrossRef] [Google Scholar]
  • W.K. Brauers, Location theory and multi-criteria decision making: an application of the MOORA method. Contemp. Econ. 12 (2018) 241–252. [Google Scholar]
  • S. Broumi, A. Bakali, M. Talea, F. Smarandache and M. Ali, Shortest path problem under bipolar neutrosphic setting. Appl. Mech. Mater. 859 (2017) 59–66. [Google Scholar]
  • A. Chakraborty, S.P. Mondal, S. Alam and A. Mahata, Cylindrical neutrosophic single-valued number and its application in networking problem, multi-criterion group decision-making problem and graph theory. CAAI Trans. Intell. Technol. 5 (2020) 68–77. [Google Scholar]
  • J. Chen and J. Ye, Some single-valued neutrosophic Dombi weighted aggregation operators for multiple attribute decision-making. Symmetry 9 (2017) 82. [Google Scholar]
  • Y. Cui, Z. Geng, Q. Zhu and Y. Han, Multi-objective optimization methods and application in energy saving. Energy 125 (2017) 681–704. [Google Scholar]
  • E. Durmić, Evaluation of criteria for sustainable supplier selection using fucom method. Oper. Res. Eng. Sci. Theor. App. 2 (2019) 91–107. [Google Scholar]
  • A. El-Araby, The utilization of marcos method for different engineering applications: a comparative study. Int. J. Res. Ind. Eng. 12 (2023) 155–164. [Google Scholar]
  • A. Escamilla-García, G.M. Soto-Zarazúa, M. Toledano-Ayala, E. Rivas-Araiza and A. Gastélum-Barrios, Applications of artificial neural networks in greenhouse technology and overview for smart agriculture development. Appl. Sci. 10 (2020) 3835. [Google Scholar]
  • H. Fazlollahtabar, A. Smailbašić and Ž. Stević, FUCOM method in group decision-making: selection of forklift in a warehouse. Decis. Making App. Manage. Eng. 2 (2019) 49–65. [Google Scholar]
  • C. Fu, W. Chang and S. Yang, Multiple criteria group decision making based on group satisfaction. Inf. Sci. 518 (2020) 309–329. [Google Scholar]
  • F. Gallego Lupiá˜nez, Interval neutrosophic sets and topology. Kybernetes 38 (2009) 621–624. [Google Scholar]
  • H. Garg, New logarithmic operational laws and their aggregation operators for pythagorean fuzzy set and their applications. Int. J. Intell. Syst. 34 (2019) 82–106. [Google Scholar]
  • T. Goldammer, A guide to operations and technology. Greenhouse Management (2024). [Google Scholar]
  • V. Grubinger, Organic greenhouse tomato nutrition. Retrieved from http://www.uvm.edu/vtvegandberry/factsheets//OrganicGreenhouseTomatoNutrition.Searchin (2017). [Google Scholar]
  • H. Hamdani and R. Wardoyo, The complexity calculation for group decision making using TOPSIS algorithm, in AIP Conference Proceedings. Vol. 1755. AIP Publishing (2016). [Google Scholar]
  • T.S. Haque, A. Chakraborty, S.P. Mondal and S. Alam, A novel logarithmic operational law and aggregation operators for trapezoidal neutrosophic number with MCGDM skill to determine most harmful virus. Appl. Intell. (2022) 1–20. [Google Scholar]
  • Q. Khan, T. Mahmood and K. Ullah, Applications of improved spherical fuzzy Dombi aggregation operators in decision support system. Soft Comput. 25 (2021) 9097–9119. [CrossRef] [Google Scholar]
  • Z. Li and F. Wei, The logarithmic operational laws of intuitionistic fuzzy sets and intuitionistic fuzzy numbers. J. Intell. Fuzzy Syst. 33 (2017) 3241–3253. [Google Scholar]
  • H. Li, Y. Guo, H. Zhao, Y. Wang and D. Chow, Towards automated greenhouse: a state of the art review on greenhouse monitoring methods and technologies based on internet of things. Comput. Electron. Agric. 191 (2021) 106558. [Google Scholar]
  • X. Liu, Y. Xu, Z. Gong and F. Herrera, Democratic consensus reaching process for multi-person multi-criteria large scale decision making considering participants’ individual attributes and concerns. Inf. Fusion 77 (2022) 220–232. [Google Scholar]
  • T. Liu, Q. Yuan, X. Ding, Y. Wang and D. Zhang, Multi-objective optimization for greenhouse light environment using Gaussian mixture model and an improved NSGA-II algorithm. Comput. Electron. Agric. 205 (2023) 107612. [Google Scholar]
  • U. Mandal and M.R. Seikh, Interval-valued fermatean fuzzy TOPSIS method and its application to sustainable development program, in Congress on Intelligent Systems: Proceedings of CIS 2021. Vol. 2. Springer (2022) 783–796. [Google Scholar]
  • U. Mandal and M.R. Seikh, Interval-valued spherical fuzzy MABAC method based on Dombi aggregation operators with unknown attribute weights to select plastic waste management process. Appl. Soft Comput. 145 (2023) 110516. [Google Scholar]
  • N. Martin, S. Broumi, S. Sudha and R. Priya, Neutrosophic marcos in decision making on smart manufacturing system. Neutrosophic Syst. App. 4 (2023) 12–32. [Google Scholar]
  • Y. Mercan and F. Sezgin, The use of multi-criteria decision analysis (MCDA) and geographic information system (GIS) in selection of greenhouse site location: the case of Aydin region in Türkiye. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi 20 (2023) 149–158. [Google Scholar]
  • O. Olabisi and A. Nofiu, Principles for the production of tomatoes in the greenhouse, in Tomato-From Cultivation to Processing Technology. IntechOpen (2022). [Google Scholar]
  • G. Ozcan-Deniz and Y. Zhu, Multi-objective optimization of greenhouse gas emissions in highway construction projects. Sustain. Cities Soc. 28 (2017) 162–171. [Google Scholar]
  • D. Pamučar, Ž. Stević and S. Sremac, A new model for determining weight coefficients of criteria in MCDM models: full consistency method (FUCOM). Symmetry 10 (2018) 393. [Google Scholar]
  • D. Pamucar, A.E. Torkayesh, M. Deveci and V. Simic, Recovery center selection for end-of-life automotive lithium–ion batteries using an integrated fuzzy WASPAS approach. Expert Syst. App. 206 (2022) 117827. [Google Scholar]
  • L. Peng and D. Xu, A multi-criteria decision-making with regret theory-based multimoora method under interval neutrosophic environment. J. Intell. Fuzzy Syst. 44 (2023) 4059–4077. [Google Scholar]
  • J.-J. Peng, J.-Q. Wang, J. Wang, H.-Y. Zhang and X.-H. Chen, Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems. Int. J. Syst. Sci. 47 (2016) 2342–2358. [Google Scholar]
  • H.-G. Peng, H.-Y. Zhang and J.-Q. Wang, Probability multi-valued neutrosophic sets and its application in multi-criteria group decision-making problems. Neural Comput. App. 30 (2018) 563–583. [Google Scholar]
  • X. Peng, H. Garg and Z. Luo, When content-centric networking meets multi-criteria group decision-making: optimal cache placement policy achieved by marcos with q-rung orthopair fuzzy set pair analysis. Eng. App. Artif. Intell. 123 (2023) 106231. [Google Scholar]
  • J.L.J. Pereira, G.A. Oliver, M.B. Francisco, S.S. Cunha Jr and G.F. Gomes, A review of multi-objective optimization: methods and algorithms in mechanical engineering problems. Arch. Comput. Methods Eng. 29 (2022) 2285–2308. [Google Scholar]
  • L. Pérez-Domínguez, L.A. Rodríguez-Picón, A. Alvarado-Iniesta, D. Luviano Cruz and Z. Xu, MOORA under Pythagorean fuzzy set for multiple criteria decision making. Complexity 2018 (2018) 2602376. [Google Scholar]
  • K. Rahman, Some new logarithmic aggregation operators and their application to group decision making problem based on t-norm and t-conorm. Soft Comput. 26 (2022) 2751–2772. [CrossRef] [Google Scholar]
  • Reporter, Tomato price. HindustanTimes. Accessed 21 September https://www.nabard.org/auth/writereaddata/tender/2208232801soaring-tomato-prices-Issues-and-concerns.pdf (2023). [Google Scholar]
  • Y. Rong, W. Niu, H. Garg, Y. Liu and L. Yu, A hybrid group decision approach based on MARCOS and regret theory for pharmaceutical enterprises assessment under a single-valued neutrosophic scenario. Systems 10 (2022) 106. [Google Scholar]
  • D.P. Rubanga, K. Hatanaka and S. Shimada, Development of a simplified smart agriculture system for small-scale greenhouse farming. Sensors Mater. 31 (2019) 831–843. [Google Scholar]
  • A. Saha, A.R. Mishra and P. Rani, FUCOM-MARCOS based group decision-making using Dombi power aggregation of dual probabilistic linguistic information. (2021). [Google Scholar]
  • B. Saltuk and O. Artun, Multi-criteria decision system for greenhouse site selection in Gediz basin, Turkey using geographic information systems (GIS). Fresenius Environ. Bull. 28 (2019) 6358–6365. [Google Scholar]
  • V. Saravanan, M. Ramachandran and M. Mani, Selection of photovoltaic devices using weighted sum method. Renew. Nonrenew. Energy 1 (2022) 67–73. [Google Scholar]
  • M.R. Seikh and P. Chatterjee, Evaluation and selection of E-learning websites using intuitionistic fuzzy confidence level based Dombi aggregation operators with unknown weight information. Appl. Soft Comput. 163 (2024) 111850. [Google Scholar]
  • M.R. Seikh and S. Dutta, A nonlinear programming model to solve matrix games with pay-offs of single-valued neutrosophic numbers. Neutrosophic Sets Syst. 47 (2021) 366–383. [Google Scholar]
  • M.R. Seikh and S. Dutta, Solution of matrix games with payoffs of single-valued trapezoidal neutrosophic numbers. Soft Comput. 26 (2022) 921–936. [CrossRef] [Google Scholar]
  • M.R. Seikh and U. Mandal, Intuitionistic fuzzy Dombi aggregation operators and their application to multiple attribute decision-making. Granular Comput. 6 (2021) 473–488. [CrossRef] [Google Scholar]
  • M.R. Seikh and U. Mandal, Multiple attribute decision-making based on 3, 4-quasirung fuzzy sets. Granular Comput. (2022) 1–14. [Google Scholar]
  • M.R. Seikh and U. Mandal, Multiple attribute group decision making based on quasirung orthopair fuzzy sets: application to electric vehicle charging station site selection problem. Eng. App. Artif. Intell. 115 (2022) 105299. [Google Scholar]
  • M.R. Seikh and U. Mandal, Interval-valued Fermatean fuzzy Dombi aggregation operators and SWARA based PROMETHEE II method to bio-medical waste management. Expert Syst. App. 226 (2023) 120082. [Google Scholar]
  • M.R. Seikh and U. Mandal, q-rung orthopair fuzzy Archimedean aggregation operators: application in the site selection for software operating units. Symmetry 15 (2023) 1680. [Google Scholar]
  • R.R. Shamshiri, J.W. Jones, K.R. Thorp, D. Ahmad, H.C. Man and S. Taheri, Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: a review. Int. Agrophys. 32 (2018) 287–302. [Google Scholar]
  • F. Smarandache, Neutrosophy: Neutrosophic Probability, Set, and Logic: Analytic Synthesis & Synthetic Analysis. American Research Press, Rehoboth, NM (1998). [Google Scholar]
  • Y. Tian, L. Si, X. Zhang, R. Cheng, C. He, K.C. Tan and Y. Jin, Evolutionary large-scale multi-objective optimization: a survey. ACM Comput. Surv. (CSUR) 54 (2021) 1–34. [Google Scholar]
  • N. Vafaei, R.A. Ribeiro and L.M. Camarinha-Matos, Normalization techniques for multi-criteria decision making: analytical hierarchy process case study, in Technological Innovation for Cyber-Physical Systems: 7th IFIP WG 5.5/SOCOLNET Advanced Doctoral Conference On Computing, Electrical and Industrial Systems, DoCEIS 2016, Costa de Caparica, Portugal, April 11–13, 2016, Proceedings 7. Springer (2016) 261–269. [Google Scholar]
  • A. Vujji and R. Dahiya, Real-time implementation for improvement of weighting coefficient selection using weighted sum method for predictive torque control of PMSM drive. Arab. J. Sci. Eng. 48 (2023) 6489–6505. [Google Scholar]
  • L.A. Zadeh, Fuzzy sets. Inf. Control 8 (1965) 338–353. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.