Open Access
Issue
RAIRO-Oper. Res.
Volume 59, Number 2, March-April 2025
Page(s) 1099 - 1119
DOI https://doi.org/10.1051/ro/2025028
Published online 15 April 2025
  • R. Cheng and Y. Jin, A social learning particle swarm optimization algorithm for scalable optimization. Inf. Sci. 291 (2015) 43–60. [CrossRef] [Google Scholar]
  • M. Clerc, Guided Randomness in Optimization. Wiley (2015). [CrossRef] [Google Scholar]
  • S. Das and P.N. Suganthan, Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems. Jadavpur University, Nanyang Technological University, Kolkata (2010). [Google Scholar]
  • G. Di Caro and M. Dorigo, The ant colony optimization meta-heuristic, in New Ideas in Optimization, edited by F. Glover D. Corne and M. Dorigo. McGraw Hill, London (1999) 11–32. [Google Scholar]
  • T. Dokeroglu, E. Sevinc, T. Kucukyilmaz and A. Cosar, A survey on new generation metaheuristic algorithms. Comput. Ind. Eng. 137 (2019) 106040. [CrossRef] [Google Scholar]
  • A. Engelbrecht, Computational Intelligence: An Introduction. Wiley (2007). [Google Scholar]
  • S.M. Elsayed, R.A. Sarker and D.L. Essam, GA with a new multi-parent crossover for solving IEEE-CEC2011 competition problems, in Congress on Evolutionary Computation (CEC). IEEE (2011) 1034–1040. [Google Scholar]
  • F. Glover and M. Laguna, Tabu Search. Springer US, Boston, MA (1998) 2093–2229. [Google Scholar]
  • D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, New York (1989). [Google Scholar]
  • P. Hansen and N. Mladenović, An Introduction to Variable Neighborhood Search. Springer US, Boston, MA (1999) 433–458. [Google Scholar]
  • K. Hussain, M.N. Mohd Salleh, S. Cheng and Y. Shi, Metaheuristic research: a comprehensive survey. Artif. Intell. Rev. 52 (2019) 2191–2233. [CrossRef] [Google Scholar]
  • J. Kennedy and R. Eberhart, Particle swarm optimization, in International Joint Conference on Neural Networks (IJCNN). IEEE (1995) 1942–1948. [Google Scholar]
  • J. Kennedy and R. Mendes, Population structure and particle swarm performance, in Congress on Evolutionary Computation (CEC). Vol. 2. IEEE (2002) 1671–1676. [Google Scholar]
  • A. Kumar, R. Misra, D. Singh, S. Mishra and S. Das, The spherical search algorithm for bound-constrained global optimization problems. Appl. Soft Comput. 85 (2019) 105734. [CrossRef] [Google Scholar]
  • A. Kumar, K. Price, A. Mohamed, A. Hadi and P. Suganthan, Problem definitions and evaluation criteria for CEC 2022 competition on single objective bound constrained numerical optimization. Technical report (2021). [Google Scholar]
  • J.J. Liang, A.K. Qin, P.N. Suganthan and S. Baskar, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10 (2006) 281–295. [CrossRef] [Google Scholar]
  • H. Liu, X. Zhang and L. Tu, A modified particle swarm optimization using adaptive strategy. Expert Syst. App. 152 (2020) 533–548. [Google Scholar]
  • N. Lynn and P. Suganthan, Ensemble particle swarm optimizer. Appl. Soft Comput. 55 (2017) 533–548. [CrossRef] [Google Scholar]
  • N. Lynn, M.Z. Ali and P.N. Suganthan, Population topologies for particle swarm optimization and differential evolution. Swarm Evol. Comput. 39 (2018) 24–35. [CrossRef] [Google Scholar]
  • Z. Meng, Y. Zhong, G. Mao and Y. Liang, PSO-sono: a novel PSO variant for single-objective numerical optimization. Inf. Sci. 586 (2022) 176–191. [CrossRef] [Google Scholar]
  • M. Nasir, S. Das, D. Maity, U. Sengupta, S. Halder and P. Suganthan, A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization. Inf. Sci. 209 (2012) 16–36. [CrossRef] [Google Scholar]
  • M. Omran and M. Clerc, Laplace’s rule of succession: a simple and efficient way to compare metaheuristics. Neural Comput. App. 35 (2023) 11807–11814. [CrossRef] [Google Scholar]
  • M. Omran and G. Iacca, An improved jaya optimization algorithm with ring topology and population size reduction. J. Intell. Syst. 31 (2022) 1178–1210. [Google Scholar]
  • E. Osaba, E. Villar-Rodriguez, J. Del Ser, A. Nebro, D. Molina, A. LaTorre, P. Suganthan, C. Coello Coello and F. Herrera, A tutorial on the design, experimentation and application of metaheuristic algorithms to real-world optimization problems. Swarm Evol. Comput. 64 (2021) 100888. [CrossRef] [Google Scholar]
  • J. Peng, Y. Li, H. Kang, Y. Shen, X. Sun and Q. Chen, Impact of population topology on particle swarm optimization and its variants: an information propagation perspective. Swarm Evol. Comput. 69 (2022) 100990. [CrossRef] [Google Scholar]
  • A. Piotrowski, J. Napiorkowski and A. Piotrowska, Particle swarm optimization or differential evolution – a comparison. Eng. App. Artif. Intell. 121 (2023) 106008. [CrossRef] [Google Scholar]
  • R. Poláková, J. Tvrdik and P. Bujok, Adaptation of population size according to current population diversity in differential evolution, in Proceedings of the IEEE 2017 Symposium Series on Computational Intelligence (SSCI). IEEE (2017) 2627–2634. [Google Scholar]
  • S. Rahnamayan, J. Jesuthasan, F. Bourennani, H. Salehinejad and G. Naterer, Computing opposition by involving entire population, in Congress on Evolutionary Computation (CEC). IEEE (2014) 1800–1807. [Google Scholar]
  • R. Rao, Rao algorithms: three metaphor-less simple algorithms for solving optimization problems. Int. J. Ind. Eng. Comput. 11 (2020) 107–130. [Google Scholar]
  • R.V. Rao, Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int. J. Ind. Eng. Comput. 7 (2016) 19–34. [Google Scholar]
  • R.V. Rao and R.B. Pawar, Improved rao algorithm: a simple and effective algorithm for constrained mechanical design optimization problems. Soft Comput. 27 (2022) 3847–3868. [Google Scholar]
  • T.M. Shami, A.A. El-Saleh, M. Alswaitti, Q. Al-Tashi, M.A. Summakieh and S. Mirjalili, Particle swarm optimization: a comprehensive survey. IEEE Access 10 (2022) 10031–10061. [CrossRef] [Google Scholar]
  • T. Si, D. Bhattacharya, S. Nayak, P.B.C. Miranda, U. Nandi, S. Mallik, U. Maulik and H. Qin, Pcobl: a novel opposition-based learning strategy to improve metaheuristics exploration and exploitation for solving global optimization problems. IEEE Access 11 (2023) 46413–46440. [CrossRef] [Google Scholar]
  • K. Socha and M. Dorigo, Ant colony optimization for continuous domains. Eur. J. Oper. Res. 185 (2008) 1155–1173. [CrossRef] [Google Scholar]
  • R. Storn and K. Price, Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical report, ICSI, Berkeley (1995). [Google Scholar]
  • B. Suman and P. Kumar, A survey of simulated annealing as a tool for single and multiobjective optimization. J. Oper. Res. Soc. 57 (2021) 1143–1160. [Google Scholar]
  • R. Tanabe and A. Fukunaga, Improving the search performance of SHADE using linear population size reduction, in Congress on Evolutionary Computation (CEC). IEEE (2014) 1658–1665. [Google Scholar]
  • F. Wilcoxon, Individual comparisons by ranking methods. Biometrics Bull. 1 (1945) 80–83. [Google Scholar]
  • X.-S. Yang, Nature-Inspired Optimization Algorithms. Elsevier (2014). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.