Open Access
Issue |
RAIRO-Oper. Res.
Volume 59, Number 3, May-June 2025
|
|
---|---|---|
Page(s) | 1551 - 1568 | |
DOI | https://doi.org/10.1051/ro/2025034 | |
Published online | 20 June 2025 |
- R. Alvarez-Valdés, F. Parre˜no and J.M. Tamarit, Reactive grasp for the strip-packing problem. Comput. Oper. Res. 35 (2008) 1065–1083. [CrossRef] [Google Scholar]
- J.E. Beasley, Algorithms for unconstrained two-dimensional guillotine cutting. J. Oper. Res. Soc. 36 (1985) 297–306. [CrossRef] [Google Scholar]
- J.E. Beasley, An exact two-dimensional non-guillotine cutting tree search procedure. Oper. Res. 33 (1985) 49–64. [CrossRef] [MathSciNet] [Google Scholar]
- B.-E. Bengtsson, Packing rectangular pieces – a heuristic approach. Comput. J. 25 (1982) 353–357. [CrossRef] [MathSciNet] [Google Scholar]
- J.A. Bennell and J.F. Oliveira, The geometry of nesting problems: a tutorial. Eur. J. Oper. Res. 184 (2008) 397–415. [CrossRef] [Google Scholar]
- J.A. Bennell, L.S. Lee and C.N. Potts, A genetic algorithm for two-dimensional bin packing with due dates. Int. J. Prod. Econ. 145 (2013) 547–560. [CrossRef] [Google Scholar]
- J.O. Berkey and P.Y. Wang, Two-dimensional finite bin-packing algorithms. J. Oper. Res. Soc. 38 (1987) 423–429. [CrossRef] [Google Scholar]
- E.K. Burke, G. Kendall and G. Whitwell, A new placement heuristic for the orthogonal stock-cutting problem. Oper. Res. 52 (2004) 655–671. [CrossRef] [Google Scholar]
- E.K. Burke, G. Kendall and G. Whitwell, A simulated annealing enhancement of the best-fit heuristic for the orthogonal stock-cutting problem. Inf. J. Comput. 21 (2009) 505–516. [CrossRef] [Google Scholar]
- N. Christofides and C. Whitlock, An algorithm for two-dimensional cutting problems. Oper. Res. 25 (1977) 30–44. [CrossRef] [Google Scholar]
- J.-F. C^oté, M. Dell’Amico and M. Iori, Combinatorial benders’ cuts for the strip packing problem. Oper. Res. 62 (2014) 643–661. [CrossRef] [MathSciNet] [Google Scholar]
- T.G. Crainic, G. Perboli and R. Tadei, Extreme point-based heuristics for three-dimensional bin packing. Inf. J. Comput. 20 (2008) 368–384. [CrossRef] [Google Scholar]
- K. Eisemann, The trim problem. Manage. Sci. 3 (1957) 279–284. [CrossRef] [Google Scholar]
- J.F. Gonçalves and M.G.C. Resende, A biased random-key genetic algorithm for the unequal area facility layout problem. Eur. J. Oper. Res. 246 (2015) 86–107. [CrossRef] [Google Scholar]
- E. Hopper and B. Turton, A genetic algorithm for a 2D industrial packing problem. Comput. Ind. Eng. 37 (1999) 375–378. [CrossRef] [Google Scholar]
- E. Hopper and B.C.H. Turton, An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem. Eur. J. Oper. Res. 128 (2001) 34–57. [CrossRef] [Google Scholar]
- A. Hottung, S. Tanaka and K. Tierney, Deep learning assisted heuristic tree search for the container pre-marshalling problem. Comput. Oper. Res. 113 (2020) 104781. [CrossRef] [Google Scholar]
- M. Iori, V.L. De Lima, S. Martello, F.K. Miyazawa and M. Monaci, Exact solution techniques for two-dimensional cutting and packing. Eur. J. Oper. Res. 289 (2021) 399–415. [CrossRef] [Google Scholar]
- M. Iori, V.L. de Lima, S. Martello and M. Monaci, 2DPackLib: a two-dimensional cutting and packing library. Optim. Lett. 16 (2022) 471–480. [CrossRef] [MathSciNet] [Google Scholar]
- S. Jakobs, On genetic algorithms for the packing of polygons. Eur. J. Oper. Res. 88 (1996) 165–181. [CrossRef] [Google Scholar]
- K. Kang, I. Moon and H. Wang, A hybrid genetic algorithm with a new packing strategy for the three-dimensional bin packing problem. Appl. Math. Comput. 219 (2012) 1287–1299. [MathSciNet] [Google Scholar]
- M. Kenmochi, T. Imamichi, K. Nonobe, M. Yagiura and H. Nagamochi, Exact algorithms for the two-dimensional strip packing problem with and without rotations. Eur. J. Oper. Res. 198 (2009) 73–83. [CrossRef] [Google Scholar]
- T. Kollar and N. Roy, Trajectory optimization using reinforcement learning for map exploration. Int. J. Rob. Res. 27 (2008) 175–196. [CrossRef] [Google Scholar]
- A.A.S. Leao, F.M.B. Toledo, J.F. Oliveira, M.A. Carravilla and R. Alvarez-Valdés, Irregular packing problems: a review of mathematical models. Eur. J. Oper. Res. 282 (2020) 803–822. [CrossRef] [Google Scholar]
- S.C.H. Leung and D. Zhang, A fast layer-based heuristic for non-guillotine strip packing. Expert Syst. App. 38 (2011) 13032–13042. [CrossRef] [Google Scholar]
- J. Liu, B. Krishnamachari, S. Zhou and Z. Niu, DeepNap: data-driven base station sleeping operations through deep reinforcement learning. IEEE Int. Things J. 5 (2018) 4273–4282. [CrossRef] [Google Scholar]
- E. López-Camacho, H. Terashima-Marin, P. Ross and G. Ochoa, A unified hyper-heuristic framework for solving bin packing problems. Expert Syst. App. 41 (2014) 6876–6889. [CrossRef] [Google Scholar]
- Y. Lu, W. Li, X. Zhang and X. Xu, Continuous-time receding-horizon reinforcement learning and its application to path-tracking control of autonomous ground vehicles. Opt. Control App. Methods 44 (2023) 1129–1147. [CrossRef] [Google Scholar]
- R. Macedo, C. Alves and J.M.V. De Carvalho, Arc-flow model for the two-dimensional guillotine cutting stock problem. Comput. Oper. Res. 37 (2010) 991–1001. [CrossRef] [Google Scholar]
- S. Martello and D. Vigo, Exact solution of the two-dimensional finite bin packing problem. Manage. Sci. 44 (1998) 388–399. [CrossRef] [Google Scholar]
- P. Mishra and A. Moustafa, Reinforcement learning based monotonic policy for online resource allocation. Future Gener. Comput. Syst. 138 (2023) 313–327. [CrossRef] [Google Scholar]
- E. Mocanu, D.C. Mocanu, P.H. Nguyen, A. Liotta, M.E. Webber, M. Gibescu and J.G. Slootweg, On-line building energy optimization using deep reinforcement learning. IEEE Trans. Smart Grid 10 (2018) 3698–3708. [Google Scholar]
- Ó. Oliveira, D. Gamboa and E. Silva, An introduction to the two-dimensional rectangular cutting and packing problem. Int. Trans. Oper. Res. 30 (2023) 3238–3266. [CrossRef] [MathSciNet] [Google Scholar]
- P. Petsagkourakis, I.O. Sandoval, E. Bradford, D. Zhang and E.A. del Rio-Chanona, Reinforcement learning for batch bioprocess optimization. Comput. Chem. Eng. 133 (2020) 106649. [CrossRef] [Google Scholar]
- M. Russo, A. Sforza and C. Sterle, An improvement of the knapsack function based algorithm of gilmore and gomory for the unconstrained two-dimensional guillotine cutting problem. Int. J. Prod. Econ. 145 (2013) 451–462. [CrossRef] [Google Scholar]
- E. Silva, J.F. Oliveira and G. W¨ascher, 2DCPackGen: a problem generator for two-dimensional rectangular cutting and packing problems. Eur. J. Oper. Res. 237 (2014) 846–856. [CrossRef] [Google Scholar]
- J. Viquerat, J. Rabault, A. Kuhnle, H. Ghraieb, A. Larcher and E. Hachem, Direct shape optimization through deep reinforcement learning. J. Comput. Phys. 428 (2021) 110080. [CrossRef] [Google Scholar]
- E. Walraven, M.T.J. Spaan and B. Bakker, Traffic flow optimization: a reinforcement learning approach. Eng. App. Artif. Intell. 52 (2016) 203–212. [CrossRef] [Google Scholar]
- Y. Wang and L. Chen, Two-dimensional residual-space-maximized packing. Expert Syst. App. 42 (2015) 3297–3305. [CrossRef] [Google Scholar]
- Q. Wang and C. Tang, Deep reinforcement learning for transportation network combinatorial optimization: a survey. Knowl.-Based Syst. 233 (2021) 107526. [CrossRef] [Google Scholar]
- G. W¨ascher, H. Haußner and H. Schumann, An improved typology of cutting and packing problems. Eur. J. Oper. Res. 183 (2007) 1109–1130. [CrossRef] [Google Scholar]
- T. Wauters, J. Verstichel and G.V. Berghe, An effective shaking procedure for 2D and 3D strip packing problems. Comput. Oper. Res. 40 (2013) 2662–2669. [CrossRef] [Google Scholar]
- L. Wei, W.-C. Oon, W. Zhu and A. Lim, A skyline heuristic for the 2D rectangular packing and strip packing problems. Eur. J. Oper. Res. 215 (2011) 337–346. [Google Scholar]
- L. Wei, H. Qin, B. Cheang and X. Xu, An efficient intelligent search algorithm for the two-dimensional rectangular strip packing problem. Int. Trans. Oper. Res. 23 (2016) 65–92. [CrossRef] [MathSciNet] [Google Scholar]
- S. Yang, S. Han and W. Ye, A simple randomized algorithm for two-dimensional strip packing. Comput. Oper. Res. 40 (2013) 1–8. [CrossRef] [Google Scholar]
- H. Zhao, Q. She, C. Zhu, Y. Yang and K. Xu, Online 3D bin packing with constrained deep reinforcement learning, in Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35. PKP Publishing Services Network (2021) 741–749. [Google Scholar]
- X. Zhao, Y. Rao and J. Fang, A reinforcement learning algorithm for the 2D-rectangular strip packing problem. J. Phys. Conf. Ser. 2181 (2022) 012002. [CrossRef] [Google Scholar]
- X. Zhao, Y. Rao, R. Meng and J. Fang, A Q-learning-based algorithm for the 2D-rectangular packing problem. Soft Comput. 27 (2023) 12057–12070. [CrossRef] [Google Scholar]
- Z. Zhou, X. Li and R.N. Zare, Optimizing chemical reactions with deep reinforcement learning. ACS Cent. Sci. 3 (2017) 1337–1344. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.