Open Access
Issue |
RAIRO-Oper. Res.
Volume 59, Number 3, May-June 2025
|
|
---|---|---|
Page(s) | 1605 - 1616 | |
DOI | https://doi.org/10.1051/ro/2025030 | |
Published online | 20 June 2025 |
- F. Ali, M. Salman and S. Huang, On the commuting graph of dihedral group. Comm. Algebra 44 (2016) 2389–2401. [CrossRef] [MathSciNet] [Google Scholar]
- F. Ali, S. Fatima and W. Wang, On the power graphs of certain finite groups. Linear Multilinear Algebra 70 (2022) 3803–3817. [CrossRef] [MathSciNet] [Google Scholar]
- M. Afkhami, On the normalized Laplacian of the comaximal graphs. Asian-Eur. J. Math. 15 (2022) 2250094. [CrossRef] [Google Scholar]
- M. Afkhami, Z. Barati and K. Khashyarmanesh, On signless Laplacian spectrum of the comaximal graphs. Asian-Eur. J. Math. 16 (2023) 2350055. [CrossRef] [Google Scholar]
- R.F. Bailey and P.J. Cameron, Base size, metric dimension and other invariants of groups and graphs. Bull London Math Soc. 43 (2011) 209–242. [CrossRef] [MathSciNet] [Google Scholar]
- S. Banerjee, Laplacian spectrum of comaximal graph of the ring Zn. Spec. Matrices 10 (2022) 285–298. [CrossRef] [MathSciNet] [Google Scholar]
- S. Banerjee, Spectra and topological indices of comaximal graph of Zn. Results Math. 77 (2022) 111. [CrossRef] [Google Scholar]
- S. Banerjee, The adjacency spectrum and metric dimension of an induced subgraph of comaximal graph of Zn. Discrete Math. Algo. Appl. 15 (2023) 2250093. [CrossRef] [Google Scholar]
- G. Chartrand, L. Eroh, M.A. Johnson and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph. Discrete Appl Math. 105 (2000) 99–113. [CrossRef] [MathSciNet] [Google Scholar]
- S. Chattopadhyay, K.L. Patra and B.K. Sahoo, Laplacian eigenvalues of the zero divisor graph of the ring Zn. Linear Algebra Appl. 584 (2020) 267–286. [CrossRef] [MathSciNet] [Google Scholar]
- K. Esmaili and K. Samei, Cut vertices in comaximal graph of a commutative Artinian ring. Indian J. Pure Appl. Math. 52 (2012) 340–343. [Google Scholar]
- M. Fehr, S. Gosselin and O.R. Oellermann, The metric dimension of Cayley digraphs. Discret. Math. 306 (2006) 31–41. [CrossRef] [Google Scholar]
- F. Harary and R.A. Melter, On the metric dimension of a graph. ARS Comb. 2 (1976) 191–195. [Google Scholar]
- C. Hernando, M. Mora, I.M. Pelayo, C. Seara and D.R. Wood, Extremal graph theory for metric dimension and diameter. Elect. Notes Discrete Math. 29 (2007) 339–343. [CrossRef] [Google Scholar]
- S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs. Discrete Appl Math. 70 (1996) 217–229. [CrossRef] [MathSciNet] [Google Scholar]
- T. Koshy, Elementary Number Theory with Applications, 2nd edition. Academic Press, USA (2007). [Google Scholar]
- H. Kumar, K.L. Patra and B.K. Sahoo, Proper divisor graph of a positive integer. Integers 21 (2021) #A65. [Google Scholar]
- H.R. Maimani, M. Salimi, A. Sattari and S. Yassemi, Comaximal graphs of commutative rings. J. Algebra 319 (2008) 1801–1808. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Mehranian, A. Gholami and A.R. Ashrafi, The spectra of power graphs of certain finite groups. Linear Multilinear Algebra 65 (2016) 1003–1010. [Google Scholar]
- Z. Mehranian, A. Gholami and A.R. Ashrafi, A note on the power graph of a finite group. Int. J. Group Theory 5 (2016) 1–10. [MathSciNet] [Google Scholar]
- R.A. Melter and I. Tomescu, Metric bases in digital geometry. Comput. Vis. Graphics Image Process 25 (1984) 113–121. [CrossRef] [Google Scholar]
- C. Poisson and P. Zhang, The metric dimension of unicyclic graphs. J. Comb. Math. Comb. Comput. 40 (2002) 17–32. [Google Scholar]
- B.A. Rather, M. Aouchiche and M. Imran, On Laplacian eigenvalues of comaximal graphs of commutative rings. Indian J. Pure Appl. Math. 55 (2024) 310–324. [CrossRef] [MathSciNet] [Google Scholar]
- K. Samei, On the comaximal graph of a commutative ring. Can. Math. Bull. 57 (2014) 413–423. [CrossRef] [Google Scholar]
- R.K. Shamra and S.M. Bhatwadekar, A note on graphical representation of rings. J. Algebra 176 (1995) 124–127. [CrossRef] [MathSciNet] [Google Scholar]
- B. Shanmukha, B. Sooryanarayana and K.S. Harinath, Metric dimension of wheels. Far East J. Appl. Math. 8 (2002) 217–229. [MathSciNet] [Google Scholar]
- H. Shapiro and S. Sodeeberg, A combinatory detection problem. Am. Math. 70 (1963) 1066–1070. [CrossRef] [Google Scholar]
- D. Sinha, A.K. Rao and B. Davvaz, On some properties of comaximal graphs of commutative rings. Nat. Acad. Sci. Lett. 44 (2021) 437–442. [CrossRef] [MathSciNet] [Google Scholar]
- P.J. Slater, Leaves of trees. Cong. Numer. 14 (1975) 549–559. [Google Scholar]
- M. Young, Adjacency matrices of zero divisor graphs of integer modulo n. Involve 8 (2015) 753–761. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.