Open Access
Issue
RAIRO-Oper. Res.
Volume 59, Number 4, July-August 2025
Page(s) 1865 - 1897
DOI https://doi.org/10.1051/ro/2025044
Published online 23 July 2025
  • M. Abuhelwa, W.A. Salah and M.J.K. Bashir, Potential energy production from organic waste and its environmental and economic impacts at a tertiary institution in Palestine. Environ. Q. Manage. 32 (2023) 167–177. [Google Scholar]
  • A.A. Alamri, A sustainable closed loop supply chains inventory model considering optimal number of remanufacturing times. Sustainability 15 (2023) 9517. [CrossRef] [Google Scholar]
  • A.A. Asha, M. Dulal and A. Habib, The influence of sustainable supply chain management technology orientation and organizational culture on the delivery product quality customer satisfaction nexus. Clean. Logistics Supply Chain 7 (2023) 100107. [Google Scholar]
  • S. Banerjee and S. Agrawal, Inventory model for deteriorating items with freshness and price dependent demand: Optimal discounting and ordering policies. Appl. Math. Model. 52 (2017) 53–64. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Barman, M. Pervin, S.K. Roy and G.W. Weber, Back-ordered inventory model with inflation in a cloudy fuzzy environment. J. Ind. Manage. Optim. 17 (2021) 1913–1941. [CrossRef] [Google Scholar]
  • P. Becerra, J. Mula and R. Sanchis, Green supply chain quantitative models for sustainable inventory management: A review. J. Clean. Prod. 328 (2021) 129544. [Google Scholar]
  • M. Ben-Daya, R. As’ad and K.A. Nabi, A single-vendor multi-buyer production remanufacturing inventory system under a centralized consignment arrangement. Comput. Ind. Eng. 135 (2019) 10–27. [CrossRef] [Google Scholar]
  • A.K. Bhunia, A.A. Shaikh and R.K. Gupta, A study on two-warehouses partially backlogged deteriorating inventory models under inflation via particle swarm optimization. Int. J. Syst. Sci. 46 (2013) 1036–1050. [Google Scholar]
  • E. Cakmak and E. Guney, Spare parts inventory classification using neutrosophic fuzzy EDAS method in the aviation industry. Expert Syst. App. 224 (2023) 120008. [Google Scholar]
  • N. Chauhan and A.S. Yadav, An inventory model for deteriorating items with two-warehouse and dependent demand using genetic algorithm. Int. J. Adv. Sci. Technol. 29 (2020) 1152–1162. [Google Scholar]
  • B. Sarkar, A. Debnath, A.S. Chiu and W. Ahmed, Circular economy-driven two-stage supply chain management for nullifying waste. J. Clean. Prod. 339 (2022) 130513. [CrossRef] [Google Scholar]
  • M. Forkan, M.M. Rizvi and M.A.M. Chowdhury, Multi-objective reverse logistics model for inventory management with environment impact: An application in industry. Intell. Syst. App. 14 (2022) 200078. [Google Scholar]
  • C. Fu, Y.Q. Liu and M. Shan, Drivers of low-carbon practices in green supply chain management in construction industry: An empirical study in China. J. Clean. Prod. 428 (2023) 139497. [Google Scholar]
  • P. Gautam, S. Maheshwari, A. Kausar and C.K. Jaggi, Sustainable retail model with preservation technology investment to moderate deterioration with environmental deliberations. J. Clean. Prod. 390 (2023) 136128. [CrossRef] [Google Scholar]
  • B.K. Dey, S. Pareek, M. Tayyab and B. Sarkar, Autonomation policy to control work-in-process inventory in a smart production system. Int. J. Prod. Res. 59 (2021) 1258–1280. [Google Scholar]
  • C.K. Jaggi, S. Pareek, N. Sharma and Nidhi, Fuzzy inventory model for deteriorating items with time-varying demand and shortage. Am. J. Oper. Res. 2 (2012) 81–92. [Google Scholar]
  • M.S. Habib, O. Asghar, A. Hussain, M. Imran, M.P. Mughal and B. Sarkar, A robust possibilistic programming approach toward animal fat-based biodiesel supply chain network design under uncertain environment. J. Clean. Prod. 278 (2021) 122403. [CrossRef] [Google Scholar]
  • W.A. Jauhari, N.H. Shah and C.N. Rosyidi, A closed loop supply chain model with rework waste disposal and carbon emission. Oper. Res. Perspect. 7 (2020) 100155. [MathSciNet] [Google Scholar]
  • S. Kumar, M. Sigroha, N. Kumar, M. Kumari and B. Sarkar, How does the retail price maintain trade-credit management with continuous investment to support the cash flow? J. Retail. Consum. Serv. 83 (2025) 104116. [CrossRef] [Google Scholar]
  • M. Kerin and D.T. Pham, A review of emerging industry 4.0 technologies in remanufacturing. J. Clean. Prod. 237 (2019) 117805. [CrossRef] [Google Scholar]
  • A.S. Mahapatra, S. Sengupta, A. Dasgupta, B. Sarkar ans R.T. Goswami, What is the impact of demand patterns on integrated online-offline and buy-online-pickup in-store (BOPS) retail in a smart supply chain management? J. Retail. Consum. Serv. 82 (2025) 104093. [CrossRef] [Google Scholar]
  • B. Sarkar and S. Bhuniya, A sustainable flexible manufacturing-remanufacturing model with improved service and green investment under variable demand. Exp. Syst. App. 202 (2022) 117154. [CrossRef] [Google Scholar]
  • G. Li, X. He, J. Zhou and H. Wu, Pricing, replenishment and preservation technology investment decisions for non-instantaneous deteriorating items. Omega 84 (2019) 114–126. [CrossRef] [Google Scholar]
  • S.S. Lin, A note on parallel machine scheduling with controllable processing times and job dependent learning effects. RAIRO Oper. Res. 55 (2021) 561–569. [Google Scholar]
  • Y.W. Lok, S.S. Supadi and K.B. Wong, Optimal investment in preservation technology for non-instantaneous deteriorating items under carbon emissions consideration. Comput. Ind. Eng. 183 (2023) 109446. [CrossRef] [Google Scholar]
  • X. Ma, Y. Zhao, Q. Luo and Q. Bai, Preservation technology investment and carbon abatement strategies in a supplier–retailer cold chain based on a differential game. Comput. Ind. Eng. 172 (2022) 108540. [Google Scholar]
  • M. Tayyab and B. Sarkar, An interactive fuzzy programming approach for a sustainable supplier selection under textile supply chain management. Comput. Indust. Eng. 155 (2021) 107164. [Google Scholar]
  • M. Tayyab, J. Jemai, H. Lim and B. Sarkar, A sustainable development framework for a cleaner multi-item multi-stage textile production system with a process improvement initiative. J. Clean. Prod. 246 (2020) 119055. [CrossRef] [Google Scholar]
  • M. Sarkar and B. Sarkar, How does an industry reduce waste and consumed energy within a multi-stage smart sustainable biofuel production system? J. Clean. Prod. 262 (2020) 121200. [CrossRef] [Google Scholar]
  • B. Pal, A. Sarkar and B. Sarkar, Optimal decisions in a dual-channel competitive green supply chain management under promotional effort. Exp. Syst. App. 211 (2023) 118315. [Google Scholar]
  • S.V.S. Padiyar, V.C. Kuraie, N. Bhagat, S.R. Singh and R. Chaudhar, An integrated inventory model for imperfect production process having preservation facilities under fuzzy and inflationary environment. Int. J. Math. Model. Numer. Optim. 12 (2022) 252–286. [Google Scholar]
  • S.V.S. Padiyar, V.C. Kuraie, N. Bhagat, S.R. Singh and H. Dem, Green Integrated model for imperfect production process under reliability. J. Math. Control Sci. App. 8 (2022) 1–13. [Google Scholar]
  • S.V.S. Padiyar, N. Bhagat and N. Punetha, A multistage sustainable inventory model with backorder, fuzzy parameters, and decision variables for deteriorating items with imperfect production and reliability. Int. J. Appl. Decis. Sci. 16 (2023) 445–473. [Google Scholar]
  • S.V.S. Padiyar, N. Bhagat, S.R. Singh and N. Punetha, Multi echelon fuzzy inventory model for perishable items in a supply chain with imperfect production and exponential demand rate. Int. J. Process Manage. Benchmarking 14 (2023) 23–28. [Google Scholar]
  • S.V.S. Padiyar, N. Bhagat, S.R. Singh, N. Punetha and H. Dem, Production policy for an inventory system under cloudy fuzzy environment. Int. J. Appl. Decis. Sci. 16 (2023) 255–299. [Google Scholar]
  • M. Rahaman, S.P. Mondal, S. Alam and S.K. De, A study of a lock fuzzy EPQ model with deterioration and stock and unit selling price-dependent demand using preservation technology. Soft Comput. 26 (2022) 2721–2740. [CrossRef] [Google Scholar]
  • M. Rahmani, A. Romsdal, F. Sgarbossa, J.O. Strandhagen and M. Holm, Towards smart production planning and control: A conceptual framework linking planning environment characteristics with the need for smart production planning and control. Ann. Rev. Control 53 (2022) 370–381. [CrossRef] [Google Scholar]
  • B. Sarkar, M. Omair and N. Kim, A cooperative advertising collaboration policy in supply chain management under uncertain conditions. App. Soft Comput. 88 (2020) 105948. [CrossRef] [Google Scholar]
  • C. Rout, A. Paul, R.S. Kumar, D. Chakraborty and A. Goswami, Cooperative sustainable supply chain for deteriorating item and imperfect production under different carbon emission regulations. J. Clean. Prod. 272 (2020) 122170. [CrossRef] [Google Scholar]
  • C. Saha, D.K. Jana and A. Duary, Enhancing production inventory management for imperfect items using fuzzy optimization strategies and differential evolution (DE) algorithms. Franklin Open 5 (2023) 100051. [CrossRef] [Google Scholar]
  • A. Garai and B. Sarkar, B. Economically independent reverse logistics of customer-centric closed-loop supply chain for herbal medicines and biofuel. J. Clean. Prod. 334 (2022) 129977. [CrossRef] [Google Scholar]
  • L.A. San-José, J. Sicilia, L.E. Cárdenas-Barrón and M. González-de-la-Rosa, A sustainable inventory model for deteriorating items with power demand and full backlogging under a carbon emission tax. Int. J. Prod. Econ. 268 (2024) 109098. [Google Scholar]
  • M. Sarkar and B.D. Chung, Flexible work-in-process production system in supply chain management under quality improvement. Int. J. Prod. Res. 58 (2020) 3821–3838. [CrossRef] [Google Scholar]
  • B. Sarkar and R. Guchhait, Ramification of information asymmetry on a green supply chain management with the cap-trade, service, and vendor-managed inventory strategies. Electron. Commer. Res. App. 60 (2023) 101274. [CrossRef] [Google Scholar]
  • R. Guchhait and B. Sarkar, Economic evaluation of an outsourced fourth-party logistics (4PL) under a flexible production system. Int. J. Prod. Econ. 279 (2025) 109440. [CrossRef] [Google Scholar]
  • B. Sarkar, S. Sao and S.K. Ghosh, Smart production and photocatalytic ultraviolet (PUV) wastewater treatment effect on a textile supply chain management. Int. J. Prod. Econ. 283 (2025) 109557. [CrossRef] [Google Scholar]
  • B. Sarkar, B. Mridha and S. Pareek. A sustainable smart multi-type biofuel manufacturing with the optimum energy utilization under flexible production. J. Clean. Prod. 332 129869. [Google Scholar]
  • M. Sebatjane, The impact of preservation technology investments on lot-sizing and shipment strategies in a three-echelon food supply chain involving growing and deteriorating items. Oper. Res. Perspect. 9 (2022) 100241. [Google Scholar]
  • D. Sharmila and R. Uthayakumar, Inventory model for deterioration items involving fuzzy with shortage and exponential demand. Int. J. Supply Oper. Manage. 2 (2015) 888–904. [Google Scholar]
  • S. Sindhuja and P. Arathi, An inventory model for deteriorating products under preseravation technology with time dependent quality demand. Cogent Eng. 10 (2023) 2176968. [Google Scholar]
  • C. Singh and S.R. Singh, Two echelon supply chain model with imperfect production, for weibull distribution deteriorating items under imprecise and inflationary. Int. J. Oper. Res. Optim. 1 (2010) 9–25. [Google Scholar]
  • S.R. Singh and C. Singh, Imperfect production process with exponential demand rate, wiebull deterioration under inflation. Int. J. Oper. Res. 12 (2011) 430–444. [Google Scholar]
  • S.R. Singh, S. Tayal and A. Gaur, Replenishment policy for deteriorating items with trade credit and allowable shortages under inflationary environment. Int. J. Process Manage. Benchmarking 10 (2020) 462–478. [CrossRef] [Google Scholar]
  • S.K. Singh, A. Chauhan and B. Sarkar, Sustainable biodiesel supply chain model based on waste animal fat with subsidy and advertisement. J. Cleaner Prod. 382 (2023) 134806. [CrossRef] [Google Scholar]
  • W. Sun and Y. Su, Analysing green forward reverse logistics with NSGA-II. Sustainability 12 (2020) 6082. [Google Scholar]
  • M. Taheri, M.S. Amalnick, A.A. Taleizadeh and E. Mardan, A fuzzy programming model for optimizing the inventory management problem considering financial issues: A case study of the dairy industry. Expert Syst. App. 221 (2023) 119766. [Google Scholar]
  • A.A. Taleizadeh, H.M. Wee and F. Jolai, Revisiting a fuzzy rough economic order quantity model for deteriorating items considering quantity discount and prepayment. Math. Comput. Model. 57 (2013) 1466–1479. [Google Scholar]
  • B. Sarkar, A.S.H. Kugele and M. Sarkar, Two non-linear programming models for the multi-stage multi-cycle smart production system with autonomation and remanufacturing in same and different cycles to reduce wastes. Journal of Indust. Inform. Integ. 44 (2025) 100749. [Google Scholar]
  • I. Moon, W.Y. Yun and B. Sarkar, Effects of variable setup cost, reliability, and production costs under controlled carbon emissions in a reliable production system. Euro. J. Indust. Eng. 16 (2022) 371–397. [Google Scholar]
  • N. Zhang, S. Tian, J. Xu, Y. Deng and K. Cai, Optimal production lot-sizing and condition-based maintenance policy considering imperfect manufacturing process and inspection errors. Comput. Ind. Eng. 177 (2023) 108929. [Google Scholar]
  • X. Zhuang, X. Song, H. Yang, D. Zhao, W. Wu and J. Zhao, The energy saving and GHG mitigation benefits assessment of product remanufacturing from a multi-life cycle perspective: A case study of spark plug. Environ. Impact Assess. Rev. 99 (2023) 107018. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.