CoDIT 2024-DO_TAP
Open Access
Issue
RAIRO-Oper. Res.
Volume 59, Number 4, July-August 2025
CoDIT 2024-DO_TAP
Page(s) 1899 - 1934
DOI https://doi.org/10.1051/ro/2025070
Published online 29 July 2025
  • J. Buszta, K. Wójcik, C.A. Guimarães Santos, K. Kozioł and K. Maciuk, Historical analysis and prediction of the magnitude and scale of natural disasters globally. Resources 12 (2023) 106. [Google Scholar]
  • S.A. Issaka, Applying the fundamental principles of natural hazards to the study of tsunamis: case study of the 2004 tsunami in sumatra. Earth 12 (2023) 111–115. [Google Scholar]
  • T. Pura, P. Güne¸s, A. Güne¸s and A.A. Hameed, Earthquake prediction for the Düzce province in the Marmara region using artificial intelligence. Appl. Sci. 13 (2023) 8642. [Google Scholar]
  • B. Sadhukhan, S. Chakraborty and S. Mukherjee, Predicting the magnitude of an impending earthquake using deep learning techniques. Earth Sci. Inf. 16 (2023) 803–823. [Google Scholar]
  • P. Zarshenas, Investigation & development of the ≪Zarshenas Earthquake Prediction Theory≫ (ZEPT) or the effects of solar & cosmic energies on the occurrence of earthquakes. Recent Adv. Petrochem. Sci. 7 (2023) 1–19. [Google Scholar]
  • C.F. Richter, An instrumental earthquake magnitude scale. Bull. Seismol. Soc. Am. 25 (1935) 1–32. [Google Scholar]
  • H. Kanamori, Quantification of earthquakes. Nature 271 (1978) 411–414. [Google Scholar]
  • J. Zhu, Y. Zhou, H. Liu, C. Jiao, S. Li, T. Fan, Y. Wei and J. Song, Rapid earthquake magnitude classification using single station data based on the machine learning. IEEE Geosci. Remote Sens. Lett. 21 (2024) 1–5. [Google Scholar]
  • T. Gurbuz, A. Cengiz, S. Kolemenoglu, C. Demir and A. Ilki, Damages and failures of structures in Izmir (Turkey) during the October 30, 2020 Aegean Sea earthquake. J. Earthquake Eng. 27 (2023) 1565–1606. [Google Scholar]
  • R.J. Geller, D.D. Jackson, Y.Y. Kagan and F. Mulargia, Earthquakes cannot be predicted. Science 275 (1997) 1616–1616. [Google Scholar]
  • L. Knopoff, Earthquake prediction: the scientific challenge. Proc. Nat. Acad. Sci. 93 (1996) 3719–3720. [Google Scholar]
  • D.L. Jaimes, C.R. Escudero, K.L. Flores and A. Zamora-Camacho, Multicriteria seismic hazard and social vulnerability assessment in the Puerto Vallarta metropolitan area, Mexico: toward a comprehensive seismic risk analysis. Nat. Hazards 116 (2023) 2671–2692. [Google Scholar]
  • A. Henaish, M. Attwa and S. Zamzam, Integrated structural, geophysical and remote sensing data for characterizing extensional linked fault systems and related land deformation hazards at Cairo-Suez district, Egypt. Eng. Geol. 314 (2023) 106999. [Google Scholar]
  • O.R. Medrano-Pérez, M.R. Bustamante-Orozco and I. Neri-Flores, Analysis of aquifers zones using aeromagnetic and satellite gravimetric data in Grijalva and Usumacinta Basins, Mexico. Groundwater Sustainable Dev. 23 (2023) 101001. [Google Scholar]
  • K.R. Chowdhury, Seismic Data Acquisition and Processing. Springer International Publishing, Cham (2020) 1–22. [Google Scholar]
  • J. Azzola, K. Thiemann and E. Gaucher, Integration of distributed acoustic sensing for real-time seismic monitoring of a geothermal field. Geotherm. Energy 11 (2023) 30. [Google Scholar]
  • M.J. Auflič, G. Herrera, R.M. Mateos, E. Poyiadji, L. Quental, B. Severine, T. Peternel, L. Podolszki, S. Calcaterra, A. Kociu and B. Warmuz, Landslide monitoring techniques in the geological surveys of Europe. Landslides 20 (2023) 951–965. [Google Scholar]
  • S. Cortinovis, M. Fondriest, F. Balsamo, A. Lucca, F. La Valle, M. Pizzati, F. Storti and G. Di Toro, In-situ rock shattering and strain localization along a seismogenic fault in dolostones (Monte Marine Fault, Italian Central Apennines). J. Struct. Geol. 183 (2024) 105144. [Google Scholar]
  • S. Mitchell, G.P. Roberts, J.P.F. Walker, F. Iezzi, C. Sgambato, J. Robertson, Z.K. Mildon, A. Ganas, I.D. Papanikolaou and E.J. Rugen, The relationship between kinematics and fault geometry for surface coseismic ruptures on across-strike faults: new observations of slip vectors and displacements along the Pisia and Skinos Faults from the 1981 Eastern Gulf of Corinth, Greece earthquakes. J. Struct. Geol. 182 (2024) 105117. [Google Scholar]
  • C. Armstrong, D. Mohrig, T. Hess, T. George and K. Straub, Influence of growth faults on coastal fluvial systems: examples from the late Miocene to Recent Mississippi River Delta. Sediment. Geol. 301 (2014) 120–132. [Google Scholar]
  • P.J. Hudleston and S.H. Treagus, Information from folds: a review. J. Struct. Geol. 32 (2010) 2042–2071. [Google Scholar]
  • B. Shibazaki, Progress in modeling the Tohoku-Oki megathrust earthquake cycle and associated crustal deformation processes. Prog. Earth Planet. Sci. 10 (2023) 1–28. [Google Scholar]
  • K. Ansari, J. Walo, A.V.H. Simanjuntak and K. Wezka, Crustal deformation from gnss measurement and earthquake mechanism along Pieniny Klippen Belt, Southern Poland. Arabian J. Geosci. 17 (2024) 180. [Google Scholar]
  • C.-Y. King, S. Azuma, M. Ohno, Y. Asai, P. He, Y. Kitagawa, G. Igarashi and H Wakita, In search of earthquake precursors in the water-level data of 16 closely clustered wells at Tono, Japan. Geophys. J. Int. 143 (2000) 469–477. [Google Scholar]
  • I.G. Kissin, V.M. Belikov and G.A. Ishankuliev, Short-term groundwater level variations in a seismic region as an indicator of the geodynamic regime. Tectonophysics 265 (1996) 313–326. [Google Scholar]
  • N. Matsumoto, G. Kitagawa and E.A. Roeloffs, Hydrological response to earthquakes in the Haibara Well, Central Japan – I. Groundwater level changes revealed using state space decomposition of atmospheric pressure, rainfall and tidal responses. Geophys. J. Int. 155 (2003) 885–898. [Google Scholar]
  • N. Matsumoto and E.A. Roeloffs, Hydrological response to earthquakes in the Haibara Well, Central Japan – II. Possible mechanism inferred from time-varying hydraulic properties. Geophys. J. Int. 155 (2003) 899–913. [Google Scholar]
  • D. Nikolopoulos, D. Cantzos, A. Alam, S. Dimopoulos and E. Petraki, Electromagnetic and radon earthquake precursors. Geosciences 14 (2024) 271. [Google Scholar]
  • A. Sobisevich, K. Kanonidi, L. Sobisevich and D. Gridnev, On a class of electromagnetic disturbances preceding strong earthquakes. Seismic Instrum. 46 (2010) 228–233. [Google Scholar]
  • Z. Zhang and Y. Wang, A global earthquake prediction model based on spherical convolutional LSTM. IEEE Trans. Geosci. Remote Sens. 62 (2024) 1–10. [Google Scholar]
  • P. Wang, T. Ren, R. Shen, G.M. Dimirovski, X. Liu and F. Meng, MFFnet: a seismic phase picking network based on multiple feature fusion. IEEE Geosci. Remote Sens. Lett. 21 (2024) 1–5. [Google Scholar]
  • A. Joshi, B. Raman and C.K. Mohan, An integrated approach for prediction of magnitude using deep learning techniques. Neural Comput. App. 36 (2024) 16991–17006. [Google Scholar]
  • S. Aoi, T. Kunugi, H. Nakamura and H. Fujiwara, Deployment of New Strong Motion Seismographs of K-NETK-NET and KiK-net. Springer Netherlands, Dordrecht (2011) 167–186. [Google Scholar]
  • R.U. Murshed, K. Noshin, M.A. Zakaria, M.F. Uddin, A.F.M.S. Amin and M.E. Ali, Real-time seismic intensity prediction using self-supervised contrastive gnn for earthquake early warning. IEEE Trans. Geosci. Remote Sens. 62 (2024) 1–19. [Google Scholar]
  • Z. Yu, Y. Jiang, X. Jing and H. Zheng, Study on geomagnetic observations associated with three major earthquakes in Southwest China through a novel deep learning framework. IEEE Trans. Geosci. Remote Sens. 62 (2024) 1–18. [Google Scholar]
  • Y. Jin, G. Kim and H. Ko, Classification and magnitude estimation of global and local seismic events using conformer and low-rank adaptation fine-tuning. IEEE Geosci. Remote Sens. Lett. 21 (2024) 1–5. [Google Scholar]
  • A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han, S. Wang, Z. Zhang, Y. Wu and R. Pang, Conformer: convolution-augmented transformer for speech recognition. Preprint arxiv:2005.08100 (2020). [Google Scholar]
  • S. Li, X. Yang, A. Cao, C. Wang, Y. Liu, Y. Liu and Q. Niu, SeisT: a foundational deep-learning model for earthquake monitoring tasks. IEEE Trans. Geosci. Remote Sens. 62 (2024) 1–15. [Google Scholar]
  • A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, L. Kaiser and I. Polosukhin, Attention is all you need (2023). [Google Scholar]
  • Y. Liu, Q. Zhao and Y. Wang, Peak ground acceleration prediction for on-site earthquake early warning with deep learning. Sci. Rep. 14 (2024) 5485. [Google Scholar]
  • S. Biswas, D. Kumar and U.K. Bera, Prediction of earthquake magnitude and seismic vulnerability mapping using artificial intelligence techniques: a case study of Turkey (2023). DOI: 10.21203/rs.3.rs-2863887/v1. [Google Scholar]
  • Y. Wang, Q. Zhao, K. Qian, Z. Wang, Z. Cao and J. Wang, Cumulative absolute velocity prediction for earthquake early warning with deep learning. Comput.-Aided Civil Infrastruct. Eng. 39 (2024) 1724–1740. [Google Scholar]
  • V. Convertito, F. Giampaolo, O. Amoroso and F. Piccialli, Deep learning forecasting of large induced earthquakes via precursory signals. Sci. Rep. 14 (2024) 2964. [Google Scholar]
  • M. Kandan, S. Sarkar, M. Sharma, V. Rajeswari and P. Poonkuzhali, Enhancing earthquake prediction through hybrid deep learning approach, in 2024 International Conference on Integrated Circuits and Communication Systems (ICICACS). IEEE (2024) 1–6. [Google Scholar]
  • J.R. Brehmer, K. Kraus, T. Gneiting, M. Herrmann and W. Marzocchi, Comparative evaluation of earthquake forecasting models: an application to Italy. Preprint arXiv:2405.10712 (2024). [Google Scholar]
  • G.F. Shidik, R.A. Pramunendar, E.J. Kusuma, G.W. Saraswati, N.A.S. Winarsih, M.S. Rohman, F.O. Saputra, M. Naufal and P.N. Andono, LUTanh activation function to optimize BI-LSTM in earthquake forecasting. Int. J. Intell. Eng. Syst. 17 (2024) 572–583. [Google Scholar]
  • M. Nurtas, Z. Zhantaev and A. Altaibek, Earthquake time-series forecast in Kazakhstan territory: forecasting accuracy with SARIMAX. Proc. Comput. Sci. 231 (2024) 353–358. [Google Scholar]
  • B. Prakke and R. Pradeep Kumar, Earthquake forecasting in the Himalayan region using neural networks models. Sādhanā 49 (2024) 58. [Google Scholar]
  • Z. Jiao and X. Shan, A Bayesian approach for forecasting the probability of large earthquakes using thermal anomalies from satellite observations. Remote Sens. 16 (2024) 1542. [Google Scholar]
  • X. Yang, Q. Lu, T. Zhang, F. Du, F. Long, M. Zhao and X. Liao, Analytical study of the changes in brightness temperature based on the tectonic field associated with three earthquakes in the Eastern Tibetan plateau. IEEE Trans. Geosci. Remote Sens. 61 (2023) 1–15. [Google Scholar]
  • C. Yang, K. Zhang, G. Chen, Y. Pan, L. Zhang and L. Qu, Application of machine learning to determine earthquake hypocenter location in earthquake early warning. IEEE Geosci. Remote Sens. Lett. 21 (2024) 1–5. [Google Scholar]
  • K. Zhang, F. Lozano-Galant, Y. Xia and J. Matos, Intensity prediction model based on machine learning for regional earthquake early warning. IEEE Sens. J. 24 (2024) 10491–10503. [Google Scholar]
  • C. Yuan, Y. Ni, Y. Lin and M. Denolle, Better together: ensemble learning for earthquake detection and phase picking. IEEE Trans. Geosci. Remote Sens. 61 (2023) 1–17. [Google Scholar]
  • A. Zollo, O. Amoroso, M. Lancieri, Y.M. Wu and H. Kanamori, A threshold-based earthquake early warning using dense accelerometer networks. Geophys. J. Int. 183 (2010) 963–974. [Google Scholar]
  • R. Patil, S. Patil, N. Todakari, A. Devkar and R. Raut, Earthquake depth & magnitude prediction model using artificial neural network, in 2023 4th International Conference for Emerging Technology (INCET) (2023) 1–5. [Google Scholar]
  • S. Karatay and S.E. Gul, Prediction of GPS-TEC on Mw > 5 earthquake days using Bayesian regularization backpropagation algorithm. IEEE Geosci. Remote Sens. Lett. 20 (2023) 1–5. [CrossRef] [Google Scholar]
  • J.-W. Lin, C.-T. Chao and J.-S. Chiou, Determining neuronal number in each hidden layer using earthquake catalogues as training data in training an embedded back propagation neural network for predicting earthquake magnitude. IEEE Access 6 (2018) 52582–52597. [Google Scholar]
  • S. Pavlides, G. Drakatos and N. Zouros, Active Tectonics and Seismicity in Greece. Springer International Publishing, Cham (2024) 431–444. [Google Scholar]
  • T.M. Tsapanos, Seismicity and seismic hazard assessment in Greece, in Earthquake Monitoring and Seismic Hazard Mitigation in Balkan Countries, edited by E.S. Husebye. Springer Netherlands, Dordrecht (2008) 253–270. [Google Scholar]
  • S. Mavroulis and E. Lekkas, Revisiting the most destructive earthquake sequence in the recent history of Greece: environmental effects induced by the 9, 11 and 12 August 1953 Ionian Seaearthquakes. Appl. Sci. 11 (2021) 8429. [Google Scholar]
  • D. Vardar and H.A. Vardar, Seismic stratigraphy of the Bandırma Bay since sea-level lowstand, Sea of Marmara, Türkiye. Geo-Marine Lett. 44 (2024) 11. [Google Scholar]
  • A. Aloisio, M.M. Rosso, A.M. De Leo, M. Fragiacomo and M. Basi, Damage classification after the 2009 l’aquila earthquake using multinomial logistic regression and neural networks. Int. J. Disaster Risk Reduction 96 (2023) 103959. [Google Scholar]
  • A. Rosti, C. Smerzini, R. Paolucci, A. Penna and M. Rota, Validation of physics-based ground shaking scenarios for empirical fragility studies: the case of the 2009 l’aquila earthquake. Bull. Earthquake Eng. 21 (2023) 95–123. [Google Scholar]
  • F. Čejka, L’. Valentová Krišková, S. Sgobba, F. Pacor, C. Felicetta and F. Gallovič, Ground motion modeling of the 2016 mw 6.2 Amatrice (Italy) earthquake by a broadband hybrid kinematic approach, including empirical site effects. Seismol. Res. Lett. 96 (2025) 97–110. [Google Scholar]
  • C. Andrenacci, S. Bello, M.S. Barbano, R. de Nardis, C. Pirrotta, F. Pietrolungo and G. Lavecchia, Reappraisal and analysis of macroseismic data for seismotectonic purposes: the strong earthquakes of Southern Calabria, Italy. Geosciences 13 (2023) 212. [Google Scholar]
  • X. Liu and W. Wang, Deep time series forecasting models: a comprehensive survey. Mathematics 12 (2024) 1504. [Google Scholar]
  • H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong and W. Zhang, Informer: beyond efficient transformer for long sequence time-series forecasting, in Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35 (2021) 11106–11115. [CrossRef] [Google Scholar]
  • Q. Zhu, J. Han, K. Chai and C. Zhao, Time series analysis based on informer algorithms: a survey. Symmetry 15 (2023) 951. [Google Scholar]
  • M.T. Hebebci, Falling walls, rising challenges: earthquakes and education, in International Conference on Science and Education (IConSE), November 16–19, 2023, Antalya/Turkey. ISRES Publishing (2023). [Google Scholar]
  • M. Wyss, M. Speiser and S. Tolis, Earthquake fatalities and potency. Nat. Hazards 119 (2023) 1091–1106. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.