Open Access
Issue
RAIRO-Oper. Res.
Volume 59, Number 4, July-August 2025
Page(s) 1727 - 1748
DOI https://doi.org/10.1051/ro/2025061
Published online 14 July 2025
  • T. Sifaoui and M. Aider, Beyond green borders: an innovative model for sustainable transportation in supply chains. RAIRO-Oper. Res. 58 (2024) 2185–2237. [Google Scholar]
  • Z. Zhou, M. Yang, L. Cheng, Y. Yuan and Z. Gan, Do passengers feel convenient when they transfer at the transportation hub? Travel Behav. Soc. 29 (2022) 65–77. [Google Scholar]
  • D. Mardanya, G. Maity, S.K. Roy and V.F. Yu, Solving the multi-modal transportation problem via the rough interval approach. RAIRO-Oper. Res. 56 (2022) 3155–3185. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • W. Yao, X. Chen, W. Luo, M. Van Tooren and J. Guo, Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles. Prog. Aerosp. Sci. 47 (2011) 450–479. [Google Scholar]
  • Y. Jin and H. Branke, Evolutionary optimization in uncertain environments – a survey. IEEE Trans. Evol. Comput. 9 (2005) 303–317. [Google Scholar]
  • S. Salomon, G. Avigad, P.J. Fleming and R.C. Purshouse, Active robust optimization: enhancing robustness to uncertain environments. IEEE Trans. Cybern. 44 (2014) 2221–2231. [Google Scholar]
  • B.L. Golden and J.R. Yee, Framework for probabilitic vehicle routing. AIIE Trans. 11 (1979) 109–112. [Google Scholar]
  • G.B. Dantzig and J. H. Ramser, The truck dispatching problem. Manag. Sci. 6 (1959) 80–91. [Google Scholar]
  • J. Han, C. Lee and S. Park, A robust scenario approach for the vehicle routing problem with uncertain travel times. Transp. Sci. 48 (2014) 373–390. [Google Scholar]
  • L. Wu, M. Hifi and H. Bederina, A new robust criterion for the vehicle routing problem with uncertain travel time. Comput. Ind. Eng. 112 (2017) 607–615. [Google Scholar]
  • D. Mardanya, G. Maity, S.K. Roy and V.F. Yu, Solving the multi-modal transportation problem via the rough interval approach. RAIRO-Oper. Res. 56 (2022) 3155–3185. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • G. Maity, S.K. Roy and J.L. Verdegay, Analyzing multimodal transportation problem and its application to artificial intelligence. Neural Comput. App. 32 (2020) 2243–2256. [Google Scholar]
  • D. Mardanya and S.K. Roy, New approach to solve fuzzy multi-objective multi-item solid transportation problem. RAIRO-Oper. Res. 57 (2023) 99–120. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • G. Maity, V.F. Yu and S.K. Roy, Optimum intervention in transportation networks using multimodal system under fuzzy stochastic environment. J. Adv. Transp. 2022 (2022) 3997396. [Google Scholar]
  • S.K. Das, M. Pervin and S.K. Roy, Multi-objective solid transportation-location problem with variable carbon emission in inventory management: a hybrid approach. Ann. Oper. Res. 324 (2023) 283–309. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Duan, Z. He and G.G. Yen, Robust multiobjective optimization for vehicle routing problem with time windows. IEEE Trans. Cybern. 52 (2022) 8300–8314. [Google Scholar]
  • S. Feigon and C. Murphy, Shared Mobility and the Transformation of Public Transit. The National Academies Press, Washington, DC (2016). [Google Scholar]
  • S. Feng, P. Duan, J. Ke and H. Yang, Coordinating ride-sourcing and public transport services with a reinforcement learning approach. Transp. Res. Part C Emerg. Technol. 138 (2022) 103611. [Google Scholar]
  • A. Shan, N.H. Hoang, K. An and H.L. Vu, A framework for railway transit network design with first-mile shared autonomous vehicles. Transp. Res. Part C Emerg. Technol. 130 (2021) 103223. [Google Scholar]
  • A. Scheltes and G.H. de Almeida Correia, Exploring the use of automated vehicles as last mile connection of train trips through an agent-based simulation model: an application to Delft, Netherlands. Int. J. Transp. Sci. Technol. 6 (2017) 28–41. [Google Scholar]
  • M.W. Levin, M. Odell, S. Samarasena and A. Schwartz, A linear program for optimal integration of shared autonomous vehicles with public transit. Transp. Res. Part C Emerg. Technol. 109 (2019) 267–288. [Google Scholar]
  • H. Si, X. Duan, L. Cheng and Z. Zhang, Determinants of consumers’ continuance intention to use dynamic ride-sharing services. Transp. Res. Part D: Trans. Env. 104 (2022) 103201. [Google Scholar]
  • T.Y. Ma, S. Rasulkhani, J.Y. Chow and S. Klein, A dynamic ridesharing dispatch and idle vehicle repositioning strategy with integrated transit transfers. Transp. Res. E Logist. Transp. Rev. 128 (2019) 417–442. [Google Scholar]
  • M. Stiglic, N. Agatz, M. Savelsbergh and M. Gradisar, Enhancing urban mobility: integrating ride-sharing and public transit. Comput. Oper. Res. 90 (2018) 12–21. [Google Scholar]
  • Z. Bian and X. Liu, Mechanism design for first-mile ridesharing based on personalized requirements part I: theoretical analysis in generalized scenarios. Transp. Res. B Meth. 120 (2019) 147–171. [Google Scholar]
  • Z. Bian and X. Liu, Mechanism design for first-mile ridesharing based on personalized requirements part II: solution algorithm for large-scale problems. Transp. Res. B Meth. 120 (2019) 172–192. [Google Scholar]
  • H. Huang, D. Bucher, J. Kissling, R. Weibel and M. Raubal, Multimodal route planning with public transport and carpooling. IEEE Trans. Intel. Transp. Syst. 20 (2019) 3513–3525. [Google Scholar]
  • Y. Peng, S. Gao, D. Yu, Y. Xiao and Y. Luo, Multi-objective optimization for multimodal transportation routing problem with stochastic transportation time based on data-driven approaches. RAIRO-Oper. Res. 57 (2023) 1745–1765. [Google Scholar]
  • W. Yao, X. Chen, W. Luo, M. van Tooren and J. Guo, Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles. Prog. Aerosp. Sci. 47 (2011) 450–479. [Google Scholar]
  • D. Lu and F. Gzara, The robust vehicle routing problem with time windows: solution by branch and price and cut. Eur. J. Oper. Res. 275 (2019) 925–938. [Google Scholar]
  • A. Agra, M. Christiansen, R. Figueiredo, L.M. Hvattum, M. Poss and C. Requejo, The robust vehicle routing problem with time windows. Comput. Oper. Res. 40 (2013) 856–866. [Google Scholar]
  • Y.N. Guo, J. Cheng, S. Luo, D. Gong and Y. Xue, Robust dynamic multi-objective vehicle routing optimization method. IEEE/ACM Trans. Comput. Biol. Bioinf. 15 (2018) 1891–1903. [Google Scholar]
  • E. Solano-Charris, C. Prins and A.C. Santos, Local search based metaheuristics for the robust vehicle routing problem with discrete scenarios. Appl. Soft Comput. 32 (2015) 518–531. [Google Scholar]
  • A. Amiri, H. Zolfagharinia and S.H. Amin, A robust multi-objective routing problem for heavy-duty electric trucks with uncertain energy consumption. Comput. Ind. Eng. 178 (2023) 109108. [Google Scholar]
  • Y. Yin, Y. Yang, Y. Yu, D. Wang and T. Cheng, Robust vehicle routing with drones under uncertain demands and truck travel times in humanitarian logistics. Transp. Res. B Meth. 174 (2023) 102781. [Google Scholar]
  • F. Zandieh and S.F. Ghannadpour, Z-trapezoidal risk assessment for multi-objective hazmat routing model with time windows. RAIRO-Oper. Res. 56 (2023) 4229–4250. [Google Scholar]
  • Y.N. Guo, X. Zhang, D.W. Gong, Z. Zhang and J.J. Yang, Novel interactive preference-based multiobjective evolutionary optimization for bolt supporting networks. IEEE Trans. Evol. Comput. 24 (2020) 750–764. [Google Scholar]
  • J. Ji, Y. Guo, D. Gong and W. Tang, MOEA/D-based participant selection method for crowdsensing with social awareness. Appl. Soft Comput. 87 (2020) 105981. [Google Scholar]
  • L.N. Xing, P. Rohlfshagen, Y.W. Chen and X. Yao, A hybrid ant colony optimization algorithm for the extended capacitated arc routing problem. IEEE Trans. Syst. Man Cybern. Syst. 41 (2011) 1110–1123. [Google Scholar]
  • A. Delgoshaei, H. Norozi, A. Mirzazadeh, M. Farhadi, G.H. Pakdel and A.K. Aram, A new model for logistics and transportation of fashion goods in the presence of stochastic market demands considering restricted retailers capacity. RAIRO-Oper. Res. 55 (2021) 523–547. [Google Scholar]
  • P. He, J.G. Jin, F. Schulte and M. Trépanier, Optimizing first-mile ridesharing services to intercity transit hubs. Transp. Res. C: Emer. Tech. 150 (2023) 104082. [Google Scholar]
  • Z. He, G.G. Yen and Z. Yi, Robust multiobjective optimization via evolutionary algorithms. IEEE Trans. Evol. Comput. 23 (2019) 316–330. [Google Scholar]
  • P. Munari, A. Moreno, J.D.L. Vega, D. Alem, J. Gondzio and R. Morabito, The robust vehicle routing problem with time windows: compact formulation and branch-price-and-cut method. Transp. Sci. 53 (2019) 1043–1066. [Google Scholar]
  • D. Bertsimas and M. Sim, The price of robustness. Oper. Res. 52 (2004) 35–53. [Google Scholar]
  • A. Ben-Tal and A. Nemirovski, Robust solutions of uncertain linear programs. Oper. Res. Lett. 25 (1999) 1–13. [Google Scholar]
  • K. Klamroth, E. Köbis, A. Schöbel and C. Tammer, A unified approach to uncertain optimization. Eur. J. Oper. Res. 260 (2017) 403–420. [CrossRef] [Google Scholar]
  • W. Wu, R. Liu and W. Jin, Integrating bus holding control strategies and schedule recovery: simulation-based comparison and recommendation. J. Adv. Transp. 2018 (2018) 1–13. [CrossRef] [Google Scholar]
  • J. Lin, W. Yu, X. Yang, P. Zhao, H. Zhang and W. Zhao, An edge computing based public vehicle system for smart transportation. IEEE Trans. Veh. Technol. 69 (2020) 12635–12651. [Google Scholar]
  • B. Huang, M. Zhou, A. Abusorrah and K. Sedraoui, Scheduling robotic cellular manufacturing systems with timed Petri net, A* search, and admissible heuristic function. IEEE T. Autom. Sci. Eng. 19 (2022) 243–250. [Google Scholar]
  • J. Yuan, Y. Zheng, X. Xie and G. Sun, Driving with knowledge from the physical world, in Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, New York, NY, USA (2011) 316–324. [Google Scholar]
  • J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun and Y. Huang, T-drive: driving directions based on taxi trajectories, in Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems (2010) 99–108. [Google Scholar]
  • C.A. Coello and M.S. Lechuga, MOPSO: a proposal for multiple objective particle swarm optimization, in Proceedings of the 2002 Congress on Evolutionary Computation. Vol. 2. IEEE (2002) 1051–1056. [Google Scholar]
  • S. Mirjalili, S. Saremi, S.M. Mirjalili and L.S. Coelho, Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst. App. 47 (2016) 106–119. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.