Open Access
Issue |
RAIRO-Oper. Res.
Volume 59, Number 4, July-August 2025
|
|
---|---|---|
Page(s) | 1749 - 1774 | |
DOI | https://doi.org/10.1051/ro/2025063 | |
Published online | 14 July 2025 |
- K. Boufi, M. El Haffari and A. Roubi, Optimality conditions and a method of centers for minimax fractional programs with difference of convex functions. J. Optim. Theory App. 187 (2020) 105–132. [CrossRef] [Google Scholar]
- A. Ghazi and A. Roubi, Optimality conditions and DC-Dinkelbach-type algorithm for generalized fractional programs with ratios of difference of convex functions. Optim. Lett. 15 (2021) 2351–2375. [CrossRef] [MathSciNet] [Google Scholar]
- H. Tuy, Convex Analysis and Global Optimization, 1st edition. Kluwer Academic Publishers, Dordrescht (1998). [Google Scholar]
- A. Ghazi and A. Roubi, A DC approach for minimax fractional optimization programs with ratios of convex functions. Optim. Methods Softw. 37 (2022) 639–657. [CrossRef] [MathSciNet] [Google Scholar]
- A. Ghazi and A. Roubi, Optimality conditions and DC-Dinkelbach-type algorithm for vector fractional programming problems with ratios of difference of convex functions. Optimization 74 (2023) 427–457. [Google Scholar]
- J.-P. Crouzeix, J.A. Ferland and S. Schaible, An algorithm for generalized fractional programs. J. Optim. Theory Appl. 47 (1985) 35–49. [Google Scholar]
- J.-P. Crouzeix, J.A. Ferland and S. Schaible, A note on an algorithm for generalized fractional programs. J. Optim. Theory Appl. 50 (1986) 183–187. [CrossRef] [MathSciNet] [Google Scholar]
- J.C. Bernard and J.A. Ferland, Convergence of interval-type algorithms for generalized fractional programming. Math. Program. 43 (1989) 349–363. [CrossRef] [Google Scholar]
- J.-P. Crouzeix and J.A. Ferland, Algorithms for generalized fractional programming. Math. Program. 52 (1991) 191–207. [CrossRef] [Google Scholar]
- A. Roubi, Method of centers for generalized fractional programming. J. Optim. Theory Appl. 107 (2000) 123–143. [CrossRef] [MathSciNet] [Google Scholar]
- J.-P. Crouzeix, J.A. Ferland and H.V. Nguyen, Revisiting Dinkelbach-type algorithms for generalized fractional programs. Opsearch 45 (2008) 97–110. [CrossRef] [MathSciNet] [Google Scholar]
- A. Roubi, Convergence of prox-regularization methods for generalized fractional programming. RAIRO Oper. Res. 36 (2002) 73–94. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- J.-J. Strodiot, J.-P. Crouzeix, J.A. Ferland and V.H. Nguyen, An inexact proximal point method for solving generalized fractional programs. J. Glob. Optim. 42 (2008) 121–138. [CrossRef] [Google Scholar]
- R. Jagannathan and S. Schaible, Duality in generalized fractional programming via Farkas’ lemma. J. Optim. Theory Appl. 41 (1983) 417–424. [Google Scholar]
- J.-P. Crouzeix, J.A. Ferland and S. Schaible, Duality in generalized linear fractional programming. Math. Program. 27 (1983) 342–354. [CrossRef] [Google Scholar]
- A.I. Barros, J.B.G. Frenk, S. Schaible and S. Zhang, A new algorithm for generalized fractional programs. Math. Program. 72 (1996) 147–175. [Google Scholar]
- A.I. Barros, J.B.G. Frenk, S. Schaible and S. Zhang, Using duality to solve generalized fractional programming problems. J. Glob. Optim. 8 (1996) 139–170. [CrossRef] [Google Scholar]
- C.R. Bector, S. Chandra and M.K. Bector, Generalized fractional programming duality: a parametric approach. J. Optim. Theory App. 60 (1989) 243–260. [Google Scholar]
- M. El Haffari and A. Roubi, Prox-dual regularization algorithm for generalized fractional programs. J. Ind. Manag. Optim. 13 (2017) 1991–2013. [CrossRef] [MathSciNet] [Google Scholar]
- M. El Haffari and A. Roubi, Convergence of a proximal algorithm for solving the dual of a generalized fractional program. RAIRO-Oper. Res. 51 (2017) 985–1004. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- K. Boufi and A. Roubi, Dual method of centers for solving generalized fractional programs. J. Glob. Optim. 69 (2017) 387–426. [CrossRef] [Google Scholar]
- K. Boufi and A. Roubi, Prox-regularization of the dual method of centers for generalized fractional programs. Optim. Methods Softw. 34 (2019) 515–545. [CrossRef] [MathSciNet] [Google Scholar]
- K. Boufi and A. Roubi, Duality results and dual bundle methods based on the dual method of centers for minimax fractional programs. SIAM J. Optim. 29 (2019) 1578–1602. [CrossRef] [MathSciNet] [Google Scholar]
- S. Addoune, M. El Haffari and A. Roubi, A proximal point algorithm for generalized fractional programs. Optimization 66 (2017) 1495–1517. [CrossRef] [MathSciNet] [Google Scholar]
- S. Addoune, K. Boufi and A. Roubi, Proximal bundle algorithms for nonlinearly constrained convex minimax fractional programs. J. Optim. Theory Appl. 179 (2018) 212–239. [CrossRef] [MathSciNet] [Google Scholar]
- H. Boualam and A. Roubi, Dual algorithms based on the proximal bundle method for solving convex minimax fractional programs. J. Ind. Manag. Optim. 15 (2019) 1897–1920. [CrossRef] [MathSciNet] [Google Scholar]
- H. Boualam and A. Roubi, Proximal bundle methods based on approximate subgradients for solving Lagrangian duals of minimax fractional programs. J. Global Optim. 74 (2019) 255–284. [CrossRef] [MathSciNet] [Google Scholar]
- I.M. Stancu-Minasian, Fractional Programming: Theory, Methods and Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands (1997). [Google Scholar]
- I.M. Stancu-Minasian, A sixth bibliography of fractional programming. Optimization 55 (2006) 405–428. [CrossRef] [MathSciNet] [Google Scholar]
- I.M. Stancu-Minasian, A seventh bibliography of fractional programming. Adv. Model. Optim. 15 (2013) 309–386. [Google Scholar]
- I.M. Stancu-Minasian, A eighth bibliography of fractional programming. Optimization 66 (2017) 439–470. [Google Scholar]
- I.M. Stancu-Minasian, A ninth bibliography of fractional programming. Optimization 68 (2019) 2123–2167. [Google Scholar]
- A.M. Stancu, Mathematical Programming with Type-I Functions. Matrix Rom (2013). [Google Scholar]
- I.M. Stancu-Minasian, B.B. Upadhyay and A.M. Stancu, A tenth bibliography of fractional programming (2024). https://csm.ro/web/stancum/FP10.pdf. [Google Scholar]
- A. Aubry, A. De Maio and M.M. Naghsh, Optimizing radar waveform and doppler filter bank via generalized fractional programming. IEEE J. Selected Topics Signal Process. 9 (2015) 1387–1399. [Google Scholar]
- A. Aubry, V. Carotenuto and A. De Maio, New results on generalized fractional programming problems with toeplitz quadratics. IEEE Signal Process. Lett. 23 (2016) 848–852. [CrossRef] [Google Scholar]
- A. Aubry, A. De Maio, Y. Huang and M. Piezzo, Robust design of radar doppler filters. IEEE Trans. Signal Process. 64 (2016) 5848–5860. [CrossRef] [MathSciNet] [Google Scholar]
- H.A. Le Thi and T. Pham Dinh, DC programming and DCA: thirty years of developments. Math. Program. Ser. B 15 (2015) 137–161. [Google Scholar]
- T. Pham Dinh and S. El Bernoussi, Algorithms for solving a class of nonconvex optimization problems. Methods of subgradients, in Fermat Days 85: Mathematics for Optimization. Vol. 129. of North-Holland Mathematics Studies. North-Holland, Amsterdam (1986). [Google Scholar]
- M. Razaviyayn, M. Hong and Z.-Q. Luo, A unified convergence analysis of block successive minimization methods for nonsmooth optimization. SIAM J. Optim. 23 (2013) 1126–1153. [CrossRef] [MathSciNet] [Google Scholar]
- A. Aubry, A. De Maio, A. Zappone, M. Razaviyayn and Z.-Q. Luo, A new sequential optimization procedure and its applications to resource allocation for wireless systems. IEEE Trans. Signal Process. 66 (2018) 6518–6533. [CrossRef] [MathSciNet] [Google Scholar]
- M. Gaudioso, G. Giallombardo, G. Miglionico and A.M. Bagirov, Minimizing nonsmooth DC functions via successive dc piecewise-affine approximations. J. Global Optim. 71 (2018) 37–55. [Google Scholar]
- J.-B. Hiriart-Urruty, Generalized differentiability, duality and optimization for problems dealing with differences of convex functions, in Convexity and Duality Optimization, edited by J. Ponstein. Springer Berlin Heidelberg, Berlin, Heidelberg (1985). [Google Scholar]
- H.A. Le Thi and T. Pham Dinh, The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 133 (2005) 23–46. [Google Scholar]
- C. Lemaréchal, Bundle methods in nonsmooth optimization, in Nonsmooth Optimization, edited by C. Lemaréchal and R. Mifflin. Pergamon Press, Oxford (1978). [Google Scholar]
- R. Mifflin, An algorithm for constrained optimization with semismooth functions. Math. Oper. Res. 2 (1977) 191–207. [Google Scholar]
- R. Mifflin, A modification and extension of Lemaréchal’s algorithm for nonsmooth minimization. Math. Program. Stud. 17 (1982) 77–90. [Google Scholar]
- M. Fukushima, A descent algorithm for nonsmooth convex optimization. Math. Program. 30 (1984) 163–175. [Google Scholar]
- C. Lemaréchal, Constructing bundle methods for convex optimization, in Fermat Days 85: Mathematics for Optimization, edited by J.B. Hiriart-Urruty. North-Holland, Amsterdam (1986) 201–240. [Google Scholar]
- K.C. Kiwiel, Free-steering relaxation methods for problems with strictly convex costs and linear constraints. Math. Oper. Res. 22 (1997) 326–349. [Google Scholar]
- K.C. Kiwiel, Proximal minimization methods with generalized Bregman functions. SIAM J. Control Optim. 35 (1997) 1142–1168. [Google Scholar]
- H. Schramm and J. Zowe, A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results. SIAM J. Optim. 2 (1992) 121–152. [Google Scholar]
- J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms II. Springer-Verlag (1993). [Google Scholar]
- M. M¨akel¨a, Survey of bundle methods for nonsmooth optimization. Optim. Methods Softw. 17 (2002) 1–29. [Google Scholar]
- R. Correa and C. Lemaréchal, Convergence of some algorithms for convex minimization. Math. Program. 62 (1993) 261–275. [Google Scholar]
- T.T. Hue, J.-J. Strodiot and V.H. Nguyen, Convergence of the approximate auxiliary problem method for solving generalized variational inequalities. J. Optim. Theory App. 121 (2004) 119–145. [Google Scholar]
- T. Nguyen, J.-J. Strodiot and V.H. Nguyen, A bundle method for solving equilibrium problems. Math. Program. 116 (2009) 529–552. [Google Scholar]
- G. Salmon, J.-J. Strodiot and V.H. Nguyen, A bundle method for solving variational inequalities. SIAM J. Optim. 14 (2004) 869–893. [Google Scholar]
- J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I. Springer-Verlag (1993). [Google Scholar]
- K. Fan, Minimax theorems. Proc. Nat. Acad. Sci. USA 39 (1953) 42–47. [Google Scholar]
- M. Sion, On general minimax theorems. Pac. J. Optim. 8 (1958) 171–176. [Google Scholar]
- R.T. Rockafellar, Convex Analysis. Princeton University Press, Princeton, NJ (1971). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.