Open Access
Issue
RAIRO-Oper. Res.
Volume 59, Number 4, July-August 2025
Page(s) 1825 - 1839
DOI https://doi.org/10.1051/ro/2025073
Published online 14 July 2025
  • J.D. Alvarado, S. Dantas, E. Mohr and D. Rautenbach, On the maximum number of minimum dominating sets in forests. Discrete Math. 342 (2019) 934–942. [Google Scholar]
  • A.E. Brouwer and W.H. Haemers, Spectra of Graphs. Springer, Berlin (2011). [Google Scholar]
  • R.A. Brualdi and E.S. Solheid, On the spectral radius of complementary acyclic matrices of zeros and ones. SIAM J. Algebraic Discrete Methods 7 (1986) 265–272. [Google Scholar]
  • J. Das and S. Mohanty, On the spectral radius of bi-block graphs with given independence number α. Appl. Math. Comput. 402 (2021) 125912. [Google Scholar]
  • R.A. Horn and C.R. Johnson, Matrix Analysis. Cambridge University Press, Cambridge (1985). [Google Scholar]
  • J. Huang, X.Y. Geng, S.C. Li and Z.H. Zhou, On spectral extrema of graphs with given order and dissociation number. Discrete Appl. Math. 342 (2024) 368–380. [Google Scholar]
  • M. Hujter and Z. Tuza, The number of maximal independent sets in triangle-free graphs. SIAM J. Discrete Math. 6 (1993) 284–288. [Google Scholar]
  • C.Y. Ji and M. Lu, On the spectral radius of trees with given independence number. Linear Algebra Appl. 488 (2016) 102–108. [Google Scholar]
  • K.M. Koh, C.Y. Goh and F.M. Dong, The maximum number of maximal independent sets in unicyclic connected graphs. Discrete Math. 308 (2008) 3761–3769. [Google Scholar]
  • S.C. Li and Z.H. Zhou, On spectral extrema of graphs with given order and generalized 4-independence number. Appl. Math. Comput. 484 (2025) 129018. [Google Scholar]
  • J.Q. Liu, Maximal independent sets in bipartite graphs. J. Graph Theory 17 (1993) 495–507. [Google Scholar]
  • Z.Z. Lou and J.M. Guo, The spectral radius of graphs with given independence number. Discrete Math. 345 (2022) 112778. [Google Scholar]
  • J.W. Moon and L. Moser, On cliques in graphs. Israel J. Math. 3 (1965) 23–28. [Google Scholar]
  • J.H. Tu, Z.P. Zhang and Y.T. Shi, The maximum number of maximum dissociation sets in trees. J. Graph Theory 96 (2021) 472–489. [CrossRef] [MathSciNet] [Google Scholar]
  • J.H. Tu, Y.X. Li and J.F. Du, Maximal and maximum dissociation sets in general and triangle-free graphs. Appl. Math. Comput. 426 (2022) 127107. [CrossRef] [Google Scholar]
  • H.S. Wilf, The number of maximal independent sets in a tree. SIAM J. Algebraic Discrete Methods 7 (1986) 125–130. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.