Open Access
Issue
RAIRO-Oper. Res.
Volume 59, Number 5, September-October 2025
Page(s) 2957 - 2991
DOI https://doi.org/10.1051/ro/2025103
Published online 20 October 2025
  • H. Wang, H. Ning, Y. Lin, W. Wang, S. Dhelim, F. Farha, J. Ding and M. Daneshmand, A survey on the metaverse: the state-of-the-art, technologies, applications, and challenges. IEEE Int. Things J. 10 (2023) 14671–14688. [Google Scholar]
  • K. Yoo, R. Welden, K. Hewett and M. Haenlein, The merchants of meta: a research agenda to understand the future of retailing in the metaverse. J. Retail. 99 (2023) 173–192. [Google Scholar]
  • S. Richter and A. Richter, What is novel about the metaverse? Int. J. Inf. Manag. 73 (2023) 102684. [Google Scholar]
  • H. Park and R.E. Lim, Fashion and the metaverse: clarifying the domain and establishing a research agenda. J. Retail. Consum. Serv. 74 (2023) 103413. [Google Scholar]
  • Y. Fu, C. Li, F.R. Yu, T.H. Luan, P. Zhao and S. Liu, A survey of blockchain and intelligent networking for the metaverse. IEEE Int. Things J. 10 (2023) 3587–3610. [Google Scholar]
  • R.K. Sadeghi, A. Azadegan and D. Ojha, A path to build supply chain cyber-resilience through absorptive capacity and visibility: two empirical studies. Ind. Mark. Manag. 111 (2023) 202–215. [Google Scholar]
  • Q. Bai, J. Xu and S.S. Chauhan, Effects of sustainability investment and risk aversion on a two-stage supply chain coordination under a carbon tax policy. Comput. Ind. Eng 142 (2020) 106324. [Google Scholar]
  • C. Liu, H. Ji and J. Wei, Smart supply chain risk assessment in intelligent manufacturing. J. Comput. Inf. Syst. 62 (2022) 609–621. [Google Scholar]
  • B. Xin and Y. Xu, Optimal subsidy strategies in a smart supply chain driven by dual innovation. Int. J. Ind. Eng. Comput. 13 (2022) 557–572. [Google Scholar]
  • Q. Li, B. Li, P. Chen and P. Hou, Dual-channel supply chain decisions under asymmetric information with a risk-averse retailer. Ann. Oper. Res. 257 (2017) 423–447. [Google Scholar]
  • A. Bilgihan, A. M. W. Leong, F. Okumus and J. Bai, Proposing a metaverse engagement model for brand development. J. Retail. Consum. Serv. 78 (2024) 103781. [Google Scholar]
  • H. Shin and J. Kang, How does the metaverse travel experience influence virtual and actual travel behaviors? Focusing on the role of telepresence and avatar identification. J. Hosp. Tour. Manag. 58 (2024) 174–183. [Google Scholar]
  • D. Chakraborty, A. Polisetty and N.P. Rana, Consumers’ continuance intention towards metaverse-based virtual stores: a multi-study perspective. Technol. Forecast. Soc. Chang. 203 (2024) 123405. [Google Scholar]
  • K.G. Barrera and D. Shah, Marketing in the metaverse: conceptual understanding, framework, and research agenda. J. Bus. Res. 155 (2023) 113420. [Google Scholar]
  • A. Mehrotra, R. Agarwal, A. Khalil, E.A. Alzeiby and V. Agarwal, Nitty-gritties of customer experience in metaverse retailing. J. Retail. Consum. Serv. 79 (2024) 103876. [Google Scholar]
  • S. Ahn, B.E. Jin and H. Seo, Why do people interact and buy in the metaverse? Self-Expansion perspectives and the impact of hedonic adaptation. J. Bus. Res. 175 (2024) 114557. [Google Scholar]
  • R. Payal, N. Sharma and Y.K. Dwivedi, Unlocking the impact of brand engagement in the metaverse on real-world purchase intentions: analyzing pre-adoption behavior in a futuristic technology platform. Electron. Commer. Res. Appl. 65 (2024) 101381. [Google Scholar]
  • D. Buhalis, M.S. Lin and D. Leung, Metaverse as a driver for customer experience and value co-creation: implications for hospitality and tourism management and marketing. Int. J. Contemp. Hosp. Manag. 35 (2023) 701–716. [Google Scholar]
  • P.B. Lowry, W.F. Boh, S. Petter and J.M. Leimeister, Long live the metaverse: identifying the potential for market disruption and future research. J. Manag. Inform. Syst. 42 (2025) 3–38. [Google Scholar]
  • Y.K. Dwivedi, L. Hughes, A.M. Baabdullah, S. Ribeiro-Navarrete, M. Giannakis, M.M. Al-Debei, D. Dennehy, B. Metri, D. Buhalis, C.M.K. Cheung, K. Conboy, R. Doyle, R. Dubey, V. Dutot, R. Felix, D.P. Goyal, A. Gustafsson, C. Hinsch, I. Jebabli, M. Janssen, Y.-G. Kim, J. Kim, S. Koos, D. Kreps, N. Kshetri, V. Kumar, K.-B. Ooi, S. Papagiannidis, I.O. Pappas, A. Polyviou, S.-M. Park, N. Pandey, M.M. Queiroz, R. Raman, P.A. Rauschnabel, A. Shirish, M. Sigala, K. Spanaki, G.W.-H. Tan, M.K. Tiwari, G. Viglia and S.F. Wamba, Metaverse beyond the hype: multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manag. 66 (2022) 102542. [Google Scholar]
  • Y. Otoum, N. Gottimukkala, N. Kumar and A. Nayak, Machine learning in metaverse security: current solutions and future challenges. ACM Comput. Surv. 56 (2024). 1–36 [CrossRef] [Google Scholar]
  • A. Gupta, S. Sawhney and K. Kompella, The first principles: setting the context for a safe and secure metaverse. ACM Comput. Surv. 56 (2024) 1–29. [CrossRef] [Google Scholar]
  • Y. Bai, H. Lei, S. Li, H. Gao, J. Li, L. Li and I.C. Soc, Decentralized and self-sovereign identity in the era of blockchain: a survey, in 5th IEEE International Conference on Blockchain (Blockchain). Espoo, Finland (2022) 500–507. [Google Scholar]
  • M. Alkaeed, A. Qayyum and J. Qadir, Privacy preservation in Artificial Intelligence and Extended Reality (AI-XR) metaverses: a survey. J. Netw. Comput. Appl. 231 (2024) 103989. [Google Scholar]
  • G. Kang, J. Koo and Y.-G. Kim, Security and privacy requirements for the metaverse: a metaverse applications perspective. IEEE Commun. Mag. 62 (2024) 148–154. [Google Scholar]
  • A. McLeod and D. Dolezel, Cyber-analytics: modeling factors associated with healthcare data breaches. Decis. Support Syst. 108 (2018) 57–68. [Google Scholar]
  • M.R. Uddin, S. Akter and W.J.T. Lee, Developing a data breach protection capability framework in retailing. Int. J. Prod. Econ. 271 (2024) 109202. [Google Scholar]
  • K. Alharbi and A. Alkhalifah, Examining the role of trust and privacy effects through online reviews in social commerce using an integrated model and hybrid approach analysis. IEEE Trans. Eng. Manag. 71 (2024) 10943–10965. [Google Scholar]
  • Y. Wang and C. Herrando, Does privacy assurance on social commerce sites matter to millennials? Int. J. Inf. Manag. 44 (2019) 164–177. [Google Scholar]
  • R. Janakiraman, J.H. Lim and R. Rishika, The effect of a data breach announcement on customer behavior: evidence from a multichannel retailer. J. Mark. 82 (2018) 85–105. [Google Scholar]
  • B.C.F. Choi, S.S. Kim and Z. Jiang, Influence of firm’s recovery endeavors upon privacy breach on online customer behavior. J. Manag. Inf. Syst. 33 (2016) 904–933. [Google Scholar]
  • S. Laradi, M. Alrawad, A. Lutfi and G. Agag, Understanding factors affecting social commerce purchase behavior: a longitudinal perspective. J. Retail. Consum. Serv. 78 (2024) 103751. [Google Scholar]
  • E.J. Nijssen, M. van der Borgh and D. Totzek, Dealing with privacy concerns in product-service system selling: value-based selling as fair treatment practice. Ind. Mark. Manag. 105 (2022) 60–71. [Google Scholar]
  • E.Y. Chan and M. Palmeira, Political ideology moderates consumer response to brand crisis apologies for data breaches. Comput. Hum. Behav. 121 (2021) 106801. [Google Scholar]
  • W.-P. Wong, K.H. Tan, K. Govindan, D. Li and A. Kumar, A conceptual framework for information-leakage-resilience. Ann. Oper. Res. 329 (2023) 931–951. [Google Scholar]
  • M.S. Hossain, H. Belina, M.M. Hasan and M.M. Kim, The effects of auditor-level cybersecurity breaches on auditor-client relationships. Eur. Account. Rev. ahead-of-print (2024). DOI: 10.1080/09638180.2024.2435389. [Google Scholar]
  • Z. Rezaee, G. Zhou and L. Bu, Corporate social irresponsibility and the occurrence of data breaches: a stakeholder management perspective. Int. J. Account. Inf. Syst. 53 (2024) 100677. [Google Scholar]
  • H. Cao, H.V. Phan and S. Silveri, Data breach disclosures and stock price crash risk: evidence from data breach notification laws. Int. Rev. Financ. Anal. 93 (2024) 103164. [Google Scholar]
  • U. Soni, V. Jain and S. Kumar, Measuring supply chain resilience using a deterministic modeling approach. Comput. Ind. Eng. 74 (2014) 11–25. [Google Scholar]
  • V. Jain, S. Kumar, U. Soni and C. Chandra, Supply chain resilience: model development and empirical analysis. Int. J. Prod. Res. 55 (2017) 6779–6800. [Google Scholar]
  • S. Ambulkar, J. Blackhurst and S. Grawe, Firm’s resilience to supply chain disruptions: scale development and empirical examination. J. Oper. Manag. 33, 34 (2015) 111–122. [Google Scholar]
  • J. Gheidar-Kheljani and K. Halat, Developing a resilient supply chain in complex product systems through investment in reliability and cooperative contracts. RAIRO-Oper. Res. 58 (2024) 79–102. [Google Scholar]
  • V.S. Narwane, R.D. Raut, S.K. Mangla, M. Dora and B.E. Narkhede, Risks to big data analytics and blockchain technology adoption in supply chains. Ann. Oper. Res. 327 (2023) 339–374. [Google Scholar]
  • S. Modgil, S. Gupta, R. Stekelorum and I. Laguir, AI technologies and their impact on supply chain resilience during COVID-19. Int. J. Phys. Distrib. Logist. Manag. 52 (2022) 130–149. [Google Scholar]
  • M. Asante, G. Epiphaniou, C. Maple, H. Al-Khateeb, M. Bottarelli and K.Z. Ghafoor, Distributed ledger technologies in supply chain security management: a comprehensive survey. IEEE Trans. Eng. Manag. 40 (2023) 713–739. [Google Scholar]
  • R.K. Sadeghi, D. Ojha and A. Azadegan, Data systems in supply chain resilience: moderated moderating effects of enterprise resource planning. Ind. Manag. Data Syst. 125 (2025) 1437–1463. [Google Scholar]
  • J.-B. Kim, C. Wang and F. Wu, Privacy breaches and the effect of customer notification. MIS Q. 48 (2024) 1483–1502. [Google Scholar]
  • T. Valletti and J. Wu, Consumer profiling with data requirements: structure and policy implications. Prod. Oper. Manag. 29 (2020) 309–329. [Google Scholar]
  • S. Luo and T.-M. Choi, E-commerce supply chains with considerations of cyber-security: should governments play a role? Prod. Oper. Manag. 31 (2022) 2107–2126. [Google Scholar]
  • J.M. Song, T. Wang, J.-C. Yen and Y.-H. Chen, Does cybersecurity maturity level assurance improve cybersecurity risk management in supply chains? Int. J. Account. Inf. Syst. 54 (2024) 100695. [Google Scholar]
  • A. Adhikari, A. Bisi and B. Avittathur, Coordination mechanism, risk sharing, and risk aversion in a five-level textile supply chain under demand and supply uncertainty. Eur. J. Oper. Res. 282 (2020) 93–107. [Google Scholar]
  • C.H. Chiu, T.M. Choi and X. Li, Supply chain coordination with risk sensitive retailer under target sales rebate. Automatica 47 (2011) 1617–1625. [Google Scholar]
  • C.H. Chiu, T.M. Choi, G. Hao and X. Li, Innovative menu of contracts for coordinating a supply chain with multiple mean-variance retailers. Eur. J. Oper. Res. 246 (2015) 815–826. [Google Scholar]
  • C. Fang, X. Liao and M. Xie, A hybrid risks-informed approach for the selection of supplier portfolio. Int. J. Prod. Res. 54 (2016) 2019–2034. [Google Scholar]
  • T. Sawik, Selection of supply portfolio under disruption risks. Omega-Int. J. Manag. Sci. 39 (2011) 194–208. [Google Scholar]
  • S. Sun, S. Hua and Z. Liu, Navigating default risk in supply chain finance: guidelines based on trade credit and equity vendor financing. Transp. Res. Pt. e-Logist. Transp. Rev. 182 (2024) 103410. [Google Scholar]
  • X. Chen, S. Shum and D. Simchi-Levi, Stable and coordinating contracts for a supply chain with multiple risk-averse suppliers. Prod. Oper. Manag. 23 (2014) 379–392. [Google Scholar]
  • H. Golpira, S. Bahramara, S.A.R. Khan and Y. Zhang, Robust bi-level risk-based optimal scheduling of microgrid operation against uncertainty. RAIRO-Oper. Res. 54 (2020) 993–1012. [Google Scholar]
  • M. Zhang, L. Shen, J. Nan, J. Wang, Z. Xia and Y. Zhao, Optimal strategies for supply chain with credit guarantee using CVaR. RAIRO-Oper. Res. 58 (2024) 2669–2682. [Google Scholar]
  • H. Yang, W. Zhuo, L. Shao and S. Talluri, Mean-variance analysis of wholesale price contracts with a capital-constrained retailer: trade credit financing vs. bank credit financing. Eur. J. Oper. Res. 294 (2021) 525–542. [CrossRef] [Google Scholar]
  • Z.-H. Wang, L. Qi, Y. Zhang and Z. Liu, A trade-credit-based incentive mechanism for a risk-averse retailer with private information. Comput. Ind. Eng. 154 (2021) 107101. [CrossRef] [Google Scholar]
  • Q. Wu, X. Xu, R. Lin and Y. Tian, Effect of risk aversion on the performance of supply chain and carbon reducing initiatives under asymmetric information. Manag. Decis. Econ. 45 (2024) 1835–1867. [Google Scholar]
  • F. Zhou, C. Zhang, S. Tiwari, X. Huang and S. Pratap, Decision and coordination of WEEE closed-loop supply chain with risk aversion under the cap-and-trade regulation. Int. J. Prod. Econ. 280 (2025) 109477. [Google Scholar]
  • H. Song and Q. Li, Decision-making in closed-loop supply chains: effects of government subsidies and risk aversion. Int. Rev. Financ. Anal. 96 (2024) 103566. [Google Scholar]
  • Y. Wei and T.M. Choi, Mean-variance analysis of supply chains under wholesale pricing and profit sharing schemes. Eur. J. Oper. Res. 204 (2010) 255–262. [CrossRef] [Google Scholar]
  • J. Li, T.-M. Choi and T.C.E. Cheng, Mean variance analysis of fast fashion supply chains with returns policy. IEEE Trans. Syst. Man Cybern. -Syst. 44 (2014) 422–434. [Google Scholar]
  • M. Liu, E. Cao and C.K. Salifou, Pricing strategies of a dual-channel supply chain with risk aversion. Transp. Res. Pt. e-Logist. Transp. Rev. 90 (2016) 108–120. [Google Scholar]
  • W. Zhuo, L. Shao and H. Yang, Mean-variance analysis of option contracts in a two-echelon supply chain. Eur. J. Oper. Res. 271 (2018) 535–547. [Google Scholar]
  • X. Wen and T. Siqin, How do product quality uncertainties affect the sharing economy platforms with risk considerations? A mean-variance analysis. Int. J. Prod. Econ. 224 (2020) 107544. [Google Scholar]
  • Y. Zhang and Q. Xu, Agency contracts with incentive mechanisms considering supplier risk aversion in a dynamic platform supply chain. Ann. Oper. Res. ahead-of-print (2024). DOI: 10.1007/s10479-024-06087-1. [Google Scholar]
  • D. Chen, Y. Zhu, X. Lin, Q. Lin and Y.-J. Chen, Impact of suppliers’ risk aversions on information sharing in a hybrid E-commerce supply chain. Nav. Res. Logist. 72 (2025) 187–199. [Google Scholar]
  • B. Xin, Y. Song, H. Tan and W. Peng, Sustainable digital fashion in a metaverse ecosystem. J. Retail. Consum. Serv. 82 (2025) 104099. [Google Scholar]
  • W. Liu, W. Wei, T.-M. Choi and X. Yan, Impacts of leadership on corporate social responsibility management in multi-tier supply chains. Eur. J. Oper. Res. 299 (2022) 483–496. [Google Scholar]
  • B. Xin, Y. Hao and L. Xie, Strategic product showcasing mode of E-commerce live streaming. J. Retail. Consum. Serv. 73 (2023) 103360. [Google Scholar]
  • P. Kowalczuk, C. Siepmann and J. Adler, Cognitive, affective, and behavioral consumer responses to augmented reality in e-commerce: a comparative study. J. Bus. Res. 124 (2021) 357–373. [Google Scholar]
  • E. Sung, S. Bae, D.-I. D. Han and O. Kwon, Consumer engagement via interactive artificial intelligence and mixed reality. Int. J. Inf. Manag. 60 (2021) 102382. [Google Scholar]
  • N. Yan, C. Liu, Y. Liu and B. Sun, Effects of risk aversion and decision preference on equilibriums in supply chain finance incorporating bank credit with credit guarantee. Appl. Stoch. Models. Bus. Ind. 33 (2017) 602–625. [Google Scholar]
  • D. Wang, W. Liu, X. Shen and W. Wei, Service order allocation under uncertain demand: risk aversion, peer competition, and relationship strength. Transp. Res. Pt. e-Logist. Transp. Rev. 130 (2019) 293–311. [Google Scholar]
  • T.P. Novak, D.L. Hoffman and Y.-F. Yung, Measuring the customer experience in online environments: a structural modeling approach. Mark. Sci. 19 (2000) 22–42. [Google Scholar]
  • D. Kim and Y.J. Ko, The impact of virtual reality (VR) technology on sport spectators’ flow experience and satisfaction. Comput. Hum. Behav. 93 (2019) 346–356. [Google Scholar]
  • S.-S. Cha, C.Y. Kim and Y. Tang, Gamification in the metaverse: affordance, perceived value, flow state, and engagement. Int. J. Tour. Res. 26 (2024) e2635. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.