Open Access
Issue
RAIRO-Oper. Res.
Volume 59, Number 5, September-October 2025
Page(s) 2993 - 3014
DOI https://doi.org/10.1051/ro/2025096
Published online 20 October 2025
  • D. Alevras, M. Grötschel and R. Wess¨aly, Dimensioning of survivable telecommunications networks. Technical report SC-96-49. Konrad-Zuse-Zentrum, Berlin (1996). [Google Scholar]
  • D. Alevras, M. Grötschel and R. Wess¨aly, Capacity and survivability models for telecommunications networks. Technical report SC-97-24. Konrad-Zuse-Zentrum, Berlin (1997). [Google Scholar]
  • D. Alevras, M. Grötschel, P. Jonas, U. Paul and R. Wess¨aly, Survivable mobile phone network architectures: models and solution methods. IEEE Commun. Magaz. 36 (1998) 88–93. [Google Scholar]
  • A. Barabasi and R. Albert, Emergence of scaling in random networks. Science 286 (2002) 509–512. [Google Scholar]
  • J. Birge and F. Louveaux, Introduction to stochastic programming. Springer, New York (2011). [Google Scholar]
  • A. Charnes and W.W. Cooper, Chance-constrained programming. Manage. Sci. 6 (1959) 73–79. [Google Scholar]
  • J. Cheng and A. Lisser, A second-order cone programming approach for linear programs with joint probabilistic constraints. Oper. Res. 40 (2012) 325–328. [Google Scholar]
  • J. Cheng and A. Lisser, Maximum probability shortest path problem. Discrete Appl. Math. 192 (2015) 40–48. [Google Scholar]
  • J. Cheng, M. Houda and A. Lisser, Chance-constrained 0–1 quadratic programs using copulas. Optim. Lett. 9 (2015) 1283–1295. [Google Scholar]
  • J. Cole, C. Lim and F. Sudargho, Survivable network design under optimal and heuristic interdiction scenarios. J. Global. Optim. 38 (2007) 181–199. [Google Scholar]
  • G. Dahl and M. Stoer, A cutting plane algorithm for multi-commodity survivable network design problems. Inf. J. Comput. 10 (1998) 1–11. [Google Scholar]
  • K.T. Fang, S. Kotz and K.W. Ng, Symmetric Multivariate and Related Distributions. Chapman and Hall (1990). [Google Scholar]
  • E.J. Gumbel, Distributions des valeurs extremes en plusiers dimensions. Publ. Inst. Statist. Univ. Paris 9 (1960) 171–173. [Google Scholar]
  • Z. Hosseini, A. Babapour, R. Khanjani, S. Khodayifar and P. Pardalos, Joint chance constrained shortest path problem with Copula theory. J. Comb. Optim. 40 (2020) 110–140. [Google Scholar]
  • P. Hougaard, A class of multivariate failure time distributions. Biometrika 73 (1986) 671–678. [Google Scholar]
  • T.P. Hutchinson and C.D. Lai, Continuous Bivariate distributions, in Emphasising Applications. Rumsby Scientific Publishing, Adelaide (1990). [Google Scholar]
  • R. Jagannathan, Chance-constrained programming with joint constraints. Oper. Res. 22 (1974) 358–372. [Google Scholar]
  • S. Kataoka, A stochastic programming model. Econometrica 31 (1963) 181–196. [Google Scholar]
  • R. Khanjani, M. Tavana and D. Caprio, Chance-constrained data envelopment analysis modeling with random-rough data. RAIRO-Oper. Res. 52 (2018) 259–284. [Google Scholar]
  • R. Khanjani, S. Khodayifar and P. Pardalos, Copula theory approach to stochastic geometric programming. J. Global. Optim. 81 (2021) 435–468. [Google Scholar]
  • S. Khezri and S. Khodayifar, Joint chance-constrained multi-objective multi-commodity minimum cost network flow problem with copula theory. Comput. Oper. Res. 156 (2023) 106–260. [Google Scholar]
  • S. Khodayifar and M. Farjaie, Survivable capacitated multicommodity network design problem with independent demand uncertainty. Math. Res. 10 (2025) 33–51. [Google Scholar]
  • A. Koster and M. Kutschka, An integrated model for survivable network design under demand uncertainty, in 8th International Workshop on the Design of Reliable Communication Networks (DRCN) (2011) [Google Scholar]
  • A. Krzemionowski and S. Szymczyk, Portfolio optimization with a copula-based extension of conditional value-at-risk. Ann. Oper. Res. 237 (2016) 219–236. [Google Scholar]
  • I. Ljubic, P. Mutzel and B. Zey, Stochastic survivable network design problems: theory and practice. Eur. J. Oper. Res. 256 (2017) 333–348. [Google Scholar]
  • R.K.Y. Low, J. Alcock, R. Faff and T. Brailsford, Canonical vine copulas in the context of modern portfolio management: are they worth it? Asymmetric Dependence in Finance: Diversification, Correlation and Portfolio Management in Market Downturns (2018) 263–289. [Google Scholar]
  • G.J. Manish and S. Cole, Models and algorithms for the design of survivable multi-commodity flow networks with general failure scenarios. Omega 36 (2008) 1057–1071. [Google Scholar]
  • B.L. Miller and H.M. Wagner, Chance constrained programming with joint constraints. Oper. Res. 13 (1965) 930–945. [Google Scholar]
  • M. Minoux, Optimum synthesis of a network with non-simultaneous multi-commodity flow requirements, in Studies on Graphs and Discrete Programming, edited by P. Hansen (1981) 269–277. [Google Scholar]
  • R.B. Nelsen, An Introduction to Copulas, 2nd edition. Springer, New York (2006). [Google Scholar]
  • M. Rios, V. Marianov and M. Gutierrez, Survivable capacitated network design problem: new formulation and Lagrangean relaxation. J. Oper. Res. Soc. 51 (2000) 574–582. [Google Scholar]
  • H. Salehi and M. Anisi, Survivable multi-commodity network flow design: case of node capacities and arc failure. Int. J. Oper. Res. 35 (2019) 355–365. [Google Scholar]
  • M.B. Salem, R. Taktak and F. Almathkour, The edge-labeled survivable network design problem: formulations and branch-and-cut. RAIRO-Oper. Res. 56 (2022) 3393–3404. [Google Scholar]
  • M. Sklar, Fonctions de repartition an dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959) 229–231. [MathSciNet] [Google Scholar]
  • S.E. Terblanche, R. Wessaly and J.M. Hatting, Survivable network design with demand uncertainty. Eur. J. Oper. Res. 210 (2011) 10–26. [Google Scholar]
  • C. Van de Panne and W. Popp, Minimum-cost cattle feed under probabilistic protein constraints. Manage. Sci. 9 (1963) 405–430. [Google Scholar]
  • H. Xiao, X. Liu and Z. Zhou, Estimation of portfolio efficiency via stochastic dea. RAIRO-Oper. Res. 56 (2022) 2367–2387. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.