Open Access
Issue
RAIRO-Oper. Res.
Volume 59, Number 5, September-October 2025
Page(s) 3423 - 3454
DOI https://doi.org/10.1051/ro/2025128
Published online 04 November 2025
  • R. Agarwal, D. Agarwal and S. Upadhyaya, Cost optimisation of a heterogeneous server queueing system with working breakdown using PSO. Int. J. Math. Oper. Res. 26 (2023) 410–424. [Google Scholar]
  • R.O. Al-Seedy, A.A. El-Sherbiny, S.A. El-Shehawy and S.I. Ammar, Transient solution of the M/M/c queue with balking and reneging. Comput. Math. App. 57 (2009) 1280–1285. [Google Scholar]
  • S.I. Ammar, Transient behavior of a two-processor heterogeneous system with catastrophes, server failures and repairs. Appl. Math. Modell. 38 (2014) 2224–2234. [Google Scholar]
  • S. Dharmaraja, Transient solution of a two-processor heterogeneous system. Math. Comput. Model. 32 (2000) 1117–1123. [Google Scholar]
  • K. Divya and K. Indhira, Performance analysis and ANFIS computing of a Markovian queuing model with intermittently accessible server under a hybrid vacation policy. RAIRO-Oper. Res. 58 (2024) 1257–1279. [Google Scholar]
  • B.T. Doshi, Queueing systems with vacations – a survey. Queueing Syst. 1 (1986) 29–66. [CrossRef] [Google Scholar]
  • V. Goswami, Analysis of discrete-time multi-server queue with balking. Int. J. Manage. Sci. Eng. Manage. 9 (2014) 21–32. [Google Scholar]
  • J.C. Ke, C.H. Wu and W.L. Pearn, Analysis of an infinite multi-server queue with an optional service. Comput. Ind. Eng. 65 (2013) 216–225. [CrossRef] [Google Scholar]
  • J. Kennedy and R. Eberhart, Particle swarm optimization, in Proceedings of ICNN’95 – International Conference on Neural Networks. Vol. 4. IEEE (1995) 1942–1948. [Google Scholar]
  • D. Kothandaraman and I. Kandaiyan, Analysis of a heterogeneous queuing model with intermittently obtainable servers under a hybrid vacation schedule. Symmetry 15 (2023) 1304. [Google Scholar]
  • B. Krishnamoorthi, On Poisson queue with two heterogeneous servers. Oper. Res. 11 (1963) 321–330. [Google Scholar]
  • A. Krishnamoorthy and C. Sreenivasan, An M/M/2 queueing system with heterogeneous servers including one with working vacation. Int. J. Stoch. Anal. 2012 (2012) 145867. [Google Scholar]
  • B.K. Kumar and D. Arivudainambi, Transient solution of an M/M/1 queue with catastrophes. Comput. Math. Appl. 40 (2000) 1233–1240. [Google Scholar]
  • B.K. Kumar and S.P. Madheswari, An M/M/2 queueing system with heterogeneous servers and multiple vacations. Math. Comput. Model. 41 (2005) 1415–1429. [Google Scholar]
  • H. Leemans, Waiting time distribution in a two-class two-server heterogeneous priority queue. Perform. Eval. 43 (2001) 133–150. [Google Scholar]
  • Y. Levy and U. Yechiali, Utilization of idle time in an M/G/1 queueing system. Manage. Sci. 22 (1975) 202–211. [Google Scholar]
  • A. Melikov, S. Aliyeva and J. Sztrik, Analysis of instantaneous feedback queue with heterogeneous servers. Mathematics 8 (2020) 2186. [Google Scholar]
  • L. Sakalauskas, L. Kaklauskas and R. Macaitiene, Stalling in queuing systems with heterogeneous channels. Appl. Sci. 14 (2024) 773. [Google Scholar]
  • O.P. Sharma and J. Dass, Initial busy period analysis for a multichannel Markovian queue. Optimization 20 (1989) 317–323. [Google Scholar]
  • V.P. Singh, Two-server Markovian queues with balking: heterogeneous vs. homogeneous servers. Oper. Res. 18 (1970) 145–159. [Google Scholar]
  • A. Sridhar and R. Allah Pitchai, Analyses of a Markovian queue with two heterogeneous servers and working vacation. Int. J. Appl. Oper. Res. 5 (2015) 1–15. [Google Scholar]
  • R. Sudhesh, A. Mohammed Shapique and S. Dharmaraja, Analysis of a multiple dual-stage vacation queueing system with disaster and repairable server. Methodol. Comput. Appl. Probab. 24 (2022) 2485–2508. [Google Scholar]
  • N. Sujatha and G. Deekshitulu, A study of transient solution of fractional M/M/2 queue with homogeneous and heterogeneous servers. Int. J. Math. Oper. Res. 31 (2025) 95–109. [Google Scholar]
  • H. Takagi, Queueing Analysis: A Foundation of Performance Analysis, Volume 1: Vacation and Priority Systems, Part 1. Elsevier Science Publishers B.V., Amsterdam (1991). [Google Scholar]
  • R. Tian, X. Chen, T. Song and T. Wang, Cost optimization of queueing systems with flexible priorities and heterogeneous servers. Heterogeneous Serv. 33 (2025) 2100–2107. [Google Scholar]
  • K.S. Trivedi, Probability and Statistics with Reliability, Queuing, and Computer Science Applications. John Wiley & Sons (2001). [Google Scholar]
  • D.Y. Yang, Y.H. Chen and C.H. Wu, Modelling and optimisation of a two-server queue with multiple vacations and working breakdowns. Int. J. Prod. Res. 58 (2020) 3036–3048. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.