Free Access
Issue
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S385 - S399
DOI https://doi.org/10.1051/ro/2019093
Published online 02 March 2021
  • G. Appa, On the uniqueness of solutions to linear programs. J. Oper. Res. Soc. 53 (2002) 1127–1132. [Google Scholar]
  • Y.Chen, W.D.Cook, N.Li and J.Zhu, Additive efficiency decomposition in two-stage DEA. Eur. J. Oper. Res. 196 (2009) 1170–1176. [Google Scholar]
  • D.K.Despotis, G.Koronakos and D.Sotiros, A multi-objective programming approach to network DEA with an application to the assessment of the academic research activity. Proc. Comput. Sci. 55 (2015) 370–379. [Google Scholar]
  • D.K.Despotis, G.Koronakos and D.Sotiros, The “weak-link” approach to network DEA for two-stage processes. Eur. J. Oper. Res. 254 (2016) 481–492. [Google Scholar]
  • D.K.Despotis, D.Sotiros and G.Koronakos, A network DEA approach for series multi-stage processes. Omega 61 (2016) 35–48. [Google Scholar]
  • A.Emrouznejad, M.Tavana and A.Hatami-Marbini, The state of the art in fuzzy data envelopment analysis. Performance Measurement with Fuzzy Data Envelopment Analysis, in: Vol. 309 of Studies in Fuzziness and Soft Computing. Springer-Verlag (2014), 48. [Google Scholar]
  • M.Jiménez and A.Bilbao, Pareto-optimal solutions in fuzzy multi-objective linear programming. Fuzzy Sets Syst. 160 (2009) 2714–2721. [Google Scholar]
  • C.Kao, Efficiency decomposition for general multi-stage systems in data envelopment analysis. Eur. J. Oper. Res. 232 (2014) 117–124. [Google Scholar]
  • S.Lim and J.Zhu, A note on two-stage network DEA model: Frontier projection and duality. Eur. J. Oper. Res. 248 (2016) 342–346. [Google Scholar]
  • R.K.Matin and M.I.Ghahfarokhi, A two-phase modified slack-based measure approach for efficiency measurement and target setting in data envelopment analysis with negative data. IMA J. Manage. Math. 26 (2015) 83–88. [Google Scholar]
  • H.Omrani, K.Shafaat and E.Emrouznejad, An integrated fuzzy clustering cooperative game data envelopment analysis model with application in hospital efficiency. Expert Syst. App. 114 (2018) 615–628. [Google Scholar]
  • J.Puri and S.P.Yadav, A fuzzy DEA model with undesirable fuzzy outputs and its application to the banking sector in India. Expert Syst. App. 41 (2014) 6419–6432. [CrossRef] [Google Scholar]
  • R.K.Shiraz, V.Charles and L.Jalalzadeh, Fuzzy rough DEA model: a possibility and expected value approaches. Expert Syst. App. 41 (2014) 434–444. [CrossRef] [Google Scholar]
  • M.Tavana, R.K.Shiraz, A.Hatami-Marbini, P.J.Agrell and K.Paryab, Chance-constrained DEA models with random fuzzy inputs and outputs. Knowl.-Based Syst. 52 (2013) 32–52. [CrossRef] [Google Scholar]
  • W.Wang, W.Lu and P.Liu, A fuzzy multi-objective two-stage DEA model for evaluating the performance of US bank holding companies. Expert Syst. App. 41 (2014) 4290–4297. [Google Scholar]
  • K.J.Watson, J.H.Blackstone and S.C.Gardiner, The evolution of a management philosophy: The theory of constraints. J. Oper. Manage. 25 (2007) 387–402. [Google Scholar]
  • Y.Wu, C.Liu and Y.Lur, Pareto-optimal solution for multiple objective linear programming problems with fuzzy goals. Fuzzy Optim. Decis. Making 14 (2015) 43–55. [Google Scholar]
  • A.L.Zerafat, A.Emrouznejad and A.Mustafa, Fuzzy data envelopment analysis: a discrete approach. Expert Syst. App. 39 (2012) 2263–2269. [Google Scholar]
  • Z.Zhou, L.Zhao, S.Lui and C.Ma, A generalized fuzzy DEA/AR performance assessment model. Math. Comput. Model. 55 (2012) 2117–2128. [Google Scholar]
  • H.Zimmermann, Applications of fuzzy set theory to mathematical programming. Inf. Sci. 36 (1985) 29–58. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.