Free Access
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S365 - S384
Published online 09 February 2021
  • R.K. Ahuja, T.L. Magneti and J.B. Orlin, Network Flows: Theory, Algorithms, and Applications. Prentice Hall, New Jersey (1993). [Google Scholar]
  • İ. Akgün, B.Ç. Tansel and R.K. Wood, The multi-terminal maximum flow network interdiction problem. Eur. J. Oper. Res. 211 (2011) 241–251. [Google Scholar]
  • G. Anandalingam and V. Apprey, Multi-level programming and conflict resolution. Eur. J. Oper. Res. 51 (1991) 233–247. [Google Scholar]
  • N. Assimakopoulos, A network interdiction model for hospital infection control. Comput. Biol. Med. 17 (1987) 413–422. [PubMed] [Google Scholar]
  • M.G. Ashtiani, A. Makui and R. Ramezanian, A robust model for a leader-follower competitive facility location problem in a discrete space. Appl. Math. Model. 37 (2013) 62–71. [Google Scholar]
  • M.S. Bazaraa, J.J. Jarvus and H.D. Sherali, Linear Programming and Network Flows. John Wiley & Sons, New Jersey (2005). [Google Scholar]
  • D. Bertsimas, E. Nasrabadi, J.B. Orlin, On the power of randomization in network interdiction. Oper. Res. Lett. 44 (2016) 114–120. [Google Scholar]
  • G. Brown, M. Carlyle, D. Diehl, J. Kline and R.K. Wood, A two-sided optimization for theater-ballistic missile defense. Oper. Res. 53 (2005) 745–763. [Google Scholar]
  • G. Brown, M. Carlyle, J. Royset and R.K. Wood, On the complexity of delaying an adversary’s project. In: The Next Wave in Computing, Optimization and Decision Technologies. Springer, New York (2005) 3–17. [Google Scholar]
  • G. Brown, M. Carlyle, J. Salmeron and R.K. Wood, Defending critical infrastructure. Interfaces 36 (2006) 530–544. [Google Scholar]
  • G. Brown, M. Carlyle, R. Harney, E. Skroch and R.K. Wood, Interdicting a nuclear weapons project. Oper. Res. 57 (2009) 866–877. [Google Scholar]
  • J.F. Camacho-Vallejo, A.E. Cordero-Franco and R.G. Gonzalez-Ramirez, Solving the bilevel facility location problem under preferences by a stackelberg-evolutionary algorithm. Math. Prob. Eng. 2014 (2014) 430243. [Google Scholar]
  • S.R. Chestnut and R. Zenklusen, Hardness and approximation for network flow interdiction. Networks 69 (2017) 378–387. [Google Scholar]
  • R.L. Church, M.P. Scaparra and R.S. Middleton, Identifying critical infrastructure: the median and covering facility interdiction problems. Ann. Assoc. Am. Geographers 94 (2004) 491–502. [Google Scholar]
  • H.W. Corley and D.Y. Shaw, Most vital links and nodes in weighted networks. Oper. Res. Lett. 1 (1982) 157–160. [Google Scholar]
  • K.J. Cormican, Computational methods for deterministic and stochastic network interdiction problems. Masters thesis. Naval Post Graduate School, Monterey, CA (1995). [Google Scholar]
  • K.J. Cormican, D.P. Morton and R.K. Wood, Stochastic network interdiction. Oper. Res. 46 (1998) 184–197. [Google Scholar]
  • Y. Disser and J. Matuschke, The complexity of computing a robust flow. Preprint arXiv:1704.08241 (2017). [Google Scholar]
  • S. Fang, P. Guo, M. Li and L. Zhang, Bilevel multiobjective programming applied to water resources allocation. Math. Prob. Eng. 2013 (2013) 837919. [Google Scholar]
  • L.R. Ford and D.R. Fulkerson, Flows in Networks. Princton University, Princton, NJ (1962). [Google Scholar]
  • D.R. Fulkerson and G.C. Harding, Maximizing the minimum source-sink path subject to a budget constraint. Math. Prog. 13 (1977) 116–118. [Google Scholar]
  • GAMS Development Corporation, General Algebraic Modeling System (GAMS). Rev 146 (2006). [Google Scholar]
  • P.M. Ghare, D.C. Montgomery and T.M. Turner, Optimal interdiction policy for a flow network. Nav. Res. Logist. Q. 18 (1971) 37–45. [Google Scholar]
  • B. Golden, A problem in network interdiction. Nav. Res. Logist. Q. 25 (1978) 711–713. [Google Scholar]
  • R.L. Helmbold, A Counter Capacity Network Interdiction Model. Report R-611-PR, RAND Corporation: Santa Monica, CA (1971). [Google Scholar]
  • E. Israeli, System interdiction and defense. Doctoral dissertation Naval Postgraduate School, Monterey, CA (1999). [Google Scholar]
  • E. Israeli and R.K. Wood, Shortest-path network interdiction. Networks 40 (2002) 97–111. [CrossRef] [Google Scholar]
  • U. Janjarassuk and T. Nakrachata-Amon, A simulated annealing algorithm to the stochastic network interdiction problem. In: Proceedings of IEEE International Conference on Industrial Engineering and Engineering Management (2016) 230–233. [Google Scholar]
  • V.V. Kalashnikov, S. Dempe, G.A. Pérez-Valdés, N.I Kalashnykova and J.F. Camacho-Vallejo, Bi-level programming and applications. Math. Prob. Eng. 2 (2015) 1–16. [Google Scholar]
  • T. Kim, S.J. Wright, D. Bienstock and S. Harnett, Analyzing vulnerability of power systems with continuous optimization formulations. IEEE Trans. Network Sci. Eng. 3 (2016) 132–146. [Google Scholar]
  • S.H. Lubore, H.D. Ratliff and G.T. Sicilia, Determining the most vital link in a flow network. Nav. Res. Logist. Q. 17 (1971) 497–502. [Google Scholar]
  • R.M. Lusby, J. Larsen and S. Bull, A survey on robustness in railway planning. Eur. J. Oper. Res. 266 (2018) 1–15. [Google Scholar]
  • K. Malik, A.K. Mittal and S.K. Gupta, The k-most vital arcs in the shortest path problem. Oper. Res. Lett. 8 (1989) 223–227. [Google Scholar]
  • A.W. McMasters and T.M. Mustin, Optimal interdiction of a supply network. Nav. Res. Logist. Q. 17 (1970) 261–268. [Google Scholar]
  • J.R. Meredith and S.J. Mantel, Project management: a managerial approach. John Wiley & Sons, Inc., New Jersey (2003). [Google Scholar]
  • H.D. Ratliff, G.T. Sicilia and S.H. Lubore, Finding the n most vital links in flow networks. Manage. Sci. 21 (1975) 531–539. [Google Scholar]
  • C. Rocco and J.E. Ramirez-Marquez, A bi-objective approach for shortest path network interdiction. Comput. Ind. Eng. 59 (2010) 232–240. [Google Scholar]
  • J.O. Royset and R.K. Wood, Solving the bi-objective maximum flow network interdiction problem. INFORMS J. Comput. 19 (2007) 175–184. [Google Scholar]
  • J. Salmeròn, R.K. Wood and R. Baldick, Analysis of electric grid security under terrorist threat. IEEE Trans. Power Syst. 19 (2004) 905–912. [Google Scholar]
  • J. Salmeròn, R.K. Wood and R. Baldick, Worst case interdiction analysis of large-scale electric power grids. IEEE Trans. Power Syst. 24 (2009) 96–104. [Google Scholar]
  • M. Simaan and J.B. Cruz, On the Stackelberg strategy in nonzero-sum games. J. Optim. Theory App. 11 (1973) 533–555. [Google Scholar]
  • J.C. Smith, Basic interdiction models. In: Wiley Encyclopedia of Operations Research and Management Science. John Wiley & Sons, Hoboken (2011). [Google Scholar]
  • K. Sundar, C. Coffrin, H. Nagarajan and R. Bent, Probabilistic N – k failure-identification for power systems. Networks 71 (2018) 302–321. [Google Scholar]
  • M.T. Tabucanon, Multiple Criteria Decision Making in Industry. Elsevier, Amsterdam (1988). [Google Scholar]
  • H. Von Stackelberg, The Theory of the Market Economy. William Hodge & Co., London, German (1952). [Google Scholar]
  • U.-P. Wei, C. Zhu, K. Xiao, Q. Yin and Y. Zha, Shortest Path network interdiction with goal threshold. IEEE Access 6 (2018) 29332–29343. [Google Scholar]
  • U.-P. Wen and S.-T. Hsu, Linear bi-level programming problems – a review. J. Oper. Res. Soc. 42 (1991) 125–133. [Google Scholar]
  • W.L. Winston, Operations Research Applications and Algorithms. Brooks/Cole, Cengage Learning, Belmont (2004). [Google Scholar]
  • R. Wollmer, Some Methods for Determining the Most Vital Link in a Railway Network. Rand Corporation, Santa Monica, CA (1963). [Google Scholar]
  • R. Wollmer, Removing arcs from a network. Oper. Res. 12 (1964) 934–940. [Google Scholar]
  • R.K. Wood, Deterministic network interdiction. Math. Comput. Model. 17 (1993) 1–18. [Google Scholar]
  • R.K. Wood, Bi-level network interdiction models: formulations and solutions. In: Wiley Encyclopedia of Operations Research and Management Science. John Wiley & Sons, Hoboken (2011). [Google Scholar]
  • P. Zhang and N. Fan, Analysis of budget for interdiction on multicommodity network flows. J. Global Optim. 67 (2016) 1–31. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.