Free Access
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S351 - S364
Published online 09 February 2021
  • F.B. Abdelaziz and H. Masri, A compromise solution for the multiobjective stochastic linear programming under partial uncertainty. Eur. J. Oper. Res. 202 (2010) 55–59. [Google Scholar]
  • M.A. Abo-Sinna and M.L. Hussein, Decomposition of multi-objective programming problems by hybrid fuzzy dynamic programming. Fuzzy Sets Syst. 60 (1993) 25–32. [Google Scholar]
  • M.A. Abo-Sinna and M.L. Hussein, An algorithm for generating efficient solutions of multi-objective dynamic programming problems. Eur. J. Oper. Res. 80 (1995) 156–165. [Google Scholar]
  • S. Anita, V. Arnautu and V. Capasso, An Introduction to Optimal Control Problems in Life Sciences and Economics: From Mathematical Models to Numerical Simulation with MATLAB. Birkhauser (2011). [Google Scholar]
  • M. Arana-Jiménez, F. Ortegón Gallego, Duality and weak efficiency in vector variational problems. J. Optim. Theory App. 159 (2013) 547–553. [Google Scholar]
  • K.J. Ãström, Introduction to Stochastic Control Theory. Academic Press, Inc., London (1970). [Google Scholar]
  • R.E. Bellman, Dynamic Programming. Republished 2003: Dover, ISBN 0-486-42809-5. Princeton University Press, Princeton, NJ (1957). [Google Scholar]
  • F. Ben Abdelaziz, Solution approaches for the multiobjective stochastic programming. Eur. J. Oper. Res. 216 (2012) 1–16. [Google Scholar]
  • F. Ben Abdelaziz, P. Lang and R. Nadeau, Dominance and efficiency in multiobjective decision under uncertainty. Theory Decis. 47 (1999) 191–211. [Google Scholar]
  • L. Berkovitz and N. Medhin, Nonlinear Optimal Control Theory. Chapman & Hall, CRC Press (2012). [Google Scholar]
  • M.A. Branch and A. Grace, MATLAB Optimization Toolbox User’s Guide, Version 1.5. The Mathworks (1996). [Google Scholar]
  • A.E. Bryson, Optimal control – 1950 to 1985. IEEE Control Syst. Mag. 16 (1996) 26–33. [Google Scholar]
  • A.E. Bryson and Y.C. Ho, Applied Optimal Control. Hemispheres (1975). [Google Scholar]
  • V. Chankong, Y.Y. Haimes and D.M. Gemperline, A multiobjective dynamic programming method for capacity expansion. IEEE Trans. Autom. Control 26 (1981) 1195–1207. [Google Scholar]
  • A. Charnes and W.W. Cooper, Chance constraints and normal deviates. J. Am. Stat. Assoc. 57 (1952) 134–148. [Google Scholar]
  • A. Chinchuluun, P.M. Pardalos, R. Enkhbat and I. Tseveendori, Optimization and Optimal Control: Theory and Applications. In Vol. 39. Springer (2010). [Google Scholar]
  • S. Dabia, T. Van Woensel and A.G. De Kok, A dynamic programming approach to multi-objective time-dependent capacitated single vehicle routing problems with time windows. BETA Publicatie: working papers 313 (2010). [Google Scholar]
  • V.A. De Oliveira and G.N. Silva, On sufficient optimality conditions for multiobjective control problems. J. Global Optim. 64 (2016) 721–744. [Google Scholar]
  • L.D. Elsgolc, Calculus of Variations. Courier Corporation (2012). [Google Scholar]
  • A. Gambier and M. Jipp, Multi-objective optimal control: an introduction. In: 2011 8th Asian Control Conference (ASCC). IEEE (2011) 1084–1089. [Google Scholar]
  • A. Gambier, A. Wellenreuther and E. Badreddin, A new approach to design multi-loop control systems with multiple controllers. In: Proceedings of the 45th IEEE Conference on Decision and Control, San Diego (2006). [Google Scholar]
  • S. Gass and T. Saaty, The computational algorithm for the parametric objective function. Naval Res. Logistics Q. 2 (1955) 39–45. [Google Scholar]
  • H.P. Geering, Optimal Control with Engineering Applications. Springer (2007). [Google Scholar]
  • I.M. Gelfand and S.V. Fomin, Calculus of Variations. Dover Publications Inc., New York (2000). [Google Scholar]
  • I. Ginchev, D. La Torre and M. Rocca, Optimality criteria for multiobjective dynamic optimization programs: the vector-valued ramsey model in Banach spaces, In: Nonlinear Analysis and Convex Analysis. Korea edited by S. Akashi, D.S. Kim, T.H. Kim, G.M. Lee, W. Takahashi and T. Tanaka. (2012) 53–73. [Google Scholar]
  • Y.Y. Haimes, L.S. Lasdon and D.A. Wismer, On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans. Syst. Man Cybern. 1 (1971) 296–297. [Google Scholar]
  • N.B.C Hutauruk and M. Brown, Directed multi-objective optimization for controller design. In: Proc. International Conference on Instrumentation, Communication and Information Technology (ICICI), Bandung, Indonesia. August 3–5 (2005) 751–756. [Google Scholar]
  • S. Jacquin, L. Jourdan and E.G. Talbi, A multi-objective dynamic programming-based metaheuristic to solve a bi-objective unit commitment problem using a multi-objective decoder. Int. J. Metaheuristics 5 (2016) 3–30. [Google Scholar]
  • P. Kall and S.W. Wallace, Stochastic Programming. Wiley (1994). [Google Scholar]
  • S. Krichen and F. Ben Abdelaziz, An optimal stopping problem with two decision makers. Sequential Anal. 26 (2007) 467–480. [Google Scholar]
  • R. Klotzler, Multiobjective dynamic programming. Math. Oper. Statist. Ser. Optim. 9 (1978) 423–426. [Google Scholar]
  • Y.J. Lai and C.L. Hwang, Fuzzy Mathematical Programming, Methods and Applications. Springer-Verlag (1992). [Google Scholar]
  • S. Lenhart and J.T. Workman, Optimal Control Applied to Biological Models, Mathematical and Computational Biology. Chapman & Hall, Boca Raton, FL, USA; CRC Press, London, UK (2007). [Google Scholar]
  • D. Liberzon, Switching in Systems and Control. Birkhauser, Boston (2003). [Google Scholar]
  • D. Liberzon, Calculus of Variations and Optimal Control Theory. A Concise Introduction. Princeton University Press, Princeton, NJ, USA (2012). [Google Scholar]
  • G.P. Liu, J.B. Yang and J.F. Whidborne, Multiobjective Optimisation and Control. Research Studies Press Ltd., Exeter (2003). [Google Scholar]
  • F. Logist, B. Houska, M. Diehl and J.F. Van Impe, Robust multi-objective optimal control of uncertain (bio) chemical processe. Chem. Eng. Sci. 66 (2011) 4670–4682. [Google Scholar]
  • L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko (1964), The Mathematical Theory Of Optimal Processes (translated by D. E. Brown. A Pergamon Press Book). The Macmillan Co., New York (2011). [Google Scholar]
  • A. Seierstad and K. Sydsaeter, Optimal Control Theory with Economic Applications. North-Holland, Amsterdam (1987). [Google Scholar]
  • G.W. Taxue, R.R. Inman and D.M. Mades, Multiobjective dynamic programming with application to a reservoir. Water Resour. Res. 15 (1979) 1403–1408. [Google Scholar]
  • J. Teghem, D. Dufrane, M. Thauvoye and P. Kunsch, Strange: an interactive method for multi-objective linear programming under uncertainty. Eur. J. Oper. Res. 26 (1986) 65–82. [Google Scholar]
  • R. Vinter, Optimal Control. Birkhauser (2010). [Google Scholar]
  • D.W. Walkup and R.J.B. Wets, Stochastic programs with recourse. SIAM J. Appl. Math. 15 (1967) 1299–1314. [Google Scholar]
  • Q. Wei, H. Zhang and J. Dai, Model-free multiobjective approximate dynamic programming for discrete-time nonlinear systems with general performance index functions. Neurocomputing 72 (2009) 1839–1848. [Google Scholar]
  • H. Zarei and M.R. Bahrmand, Multiobjective optimal control of the linear wave equation. Ain Shams Eng. J. 5 (2014) 1299–1305. [Google Scholar]
  • A.M. Zohrevand, H. Rafiei and A.H. Zohrevand, Multiobjective dynamic cell formation problem: a stochastic programming approach. Comput. Ind. Eng. 98 (2016) 323–332. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.