Free Access
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S343 - S350
Published online 02 March 2021
  • L. Bahiense, N. Maculan and C. Sagastizábal, The volume algorithm revisited: relation with bundle methods. Math. Program. 94 (2002) 41–69. [Google Scholar]
  • L. Bahiense, F. Barahona and O. Porto, Solving Steiner tree problems in graphs with lagrangian relaxation. J. Comb. Optim. 7 (2003) 259–282. [Google Scholar]
  • J.E. Beasley, An algorithm for the Steiner problem in graphs. Networks 14 (1984) 147–159. [Google Scholar]
  • A. Besso, Problema de Steiner em grafos: Uma experiência numérica para problemas de médio porte utilizando formulações compactas de multi-fluxo. Master’s thesis. Programa de Engenharia de Sistemas e Computação, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro (2015). [Google Scholar]
  • A. Claus and N. Maculan, Une nouvelle formulation du problème de Steiner sur un graphe orienté. In: Publication 315, Centre de Recherche sur les Transports, Université de Montréal, Montréal (1983). [Google Scholar]
  • M.X. Goemans and Y.S. Myung, A catalog of Steiner tree formulations. Networks 23 (1993) 19–28. [Google Scholar]
  • F.K. Hwang, D.S. Richards and P. Winter, The Steiner tree problem. In: Vol. 53 of Annals of Discrete Mathematics. North-Holland, Amsterdam (1992). [Google Scholar]
  • R.M. Karp, Reducibility among combinatorial problems, edited by R.E. Miller, J.W. Thatcher and J.D. Bohlinger. In: Complexity of Computer Computations. The IBM Research Symposia Series. Springer, New York, NY (1972) 85–103. [Google Scholar]
  • N. Maculan, The Steiner problem in graphs. Ann. Discrete Math. 31 (1987) 185–211. [Google Scholar]
  • N. Maculan, D. Arpin and S. Nguyen, Le problème de Steiner sur un graphe orienté: formulations et relaxations. Comput. Appl. Math. 7 (1988) 109–118. [Google Scholar]
  • N. Maculan, G. Plateau and A. Lisser, Integer linear models with a polynomial number of variables and constraints for some classical combinatorial optimization problems. Pesquisa Oper. 23 (2003) 161–168. [Google Scholar]
  • L. Schrage, Implicit representation of generalized variable upper bounds in linear programming. Math. Program. 14 (1978) 11–20. [Google Scholar]
  • R.T. Wong, A dual ascent approach to Steiner tree problems on a directed graph. Math. Program. 28 (1984) 271–287. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.