Free Access
Issue
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S327 - S341
DOI https://doi.org/10.1051/ro/2019064
Published online 09 February 2021
  • M.O. Abou-El-Ata and A.M.A. Hariri, The M/M/c/N queue with balking and reneging. Comput. Oper. Res. 19 (1992) 713–716. [Google Scholar]
  • I. Arizono, Y. Cui and H. Ohta, An analysis of M/M/s queueing systems based on the maximum entropy principle. J. Oper. Res. Soc. 42 (1991) 69–73. [Google Scholar]
  • G.R.M. Borzadaran, A note on maximum entropy in queueing problems. Econ. Qual. Control 24 (2009) 263–267. [Google Scholar]
  • D. Chandler, Introduction to Modern Statistical Mechanics. Oxford University Press (1987). [Google Scholar]
  • C. Chen, Z. Jia and P. Varaiya, Causes and cures of highway congestion. IEEE Control Syst. 21 (2001) 26–32. [Google Scholar]
  • F.R.B. Cruz, J. MacGregor Smith and D.C. Queiroz, Service and capacity allocation in M/G/c/c state-dependent queueing networks. Comput. Oper. Res. 32 (2005) 1545–1563. [Google Scholar]
  • F.R.B. Cruz and J. MacGregor Smith, Approximate analysis of M/G/c/c state-dependent queueing networks. Comput. Oper. Res. 34 (2007) 2332–2344. [Google Scholar]
  • D. Dickson, R.C. Ford and B. Laval, Managing real and virtual waits in hospitality and service organizations. Cornell Hosp. Q. 46 (2005) 52–68. [Google Scholar]
  • A.A. El-Sherbiny, The truncated heterogeneous two-server queue: M/M/2/N with reneging and general balk function. Int. J. Math. Arch. 3 (2012) 2745–2754. [Google Scholar]
  • A. Economou and S. Kanta, Optimal balking strategies and pricing for the single server Markovian queue with compartmented waiting space. Queueing Syst. 59 (2008) 237–269. [Google Scholar]
  • W. Greiner, L. Neise and H. Stöcker, Thermodynamics and Statistical Mechanics. Springer-Verlag, New York (1995). [Google Scholar]
  • S. Guiasu, Maximum entropy condition in queueing theory. J. Oper. Res. Soc. 37 (1986) 293–301. [Google Scholar]
  • R. Hassin and M. Haviv, To Queue or Not to Queue. Springer-Verlag, New York (2003). [Google Scholar]
  • R. Hassin, Rational Queueing. CRC press (2016). [Google Scholar]
  • M. Haviv and Y. Kerner, On balking from an empty queue. Queueing Syst. 55 (2007) 239–249. [Google Scholar]
  • M. Jain and M.R. Dhakad, Maximum entropy analysis for G/G/1 queuing system. Int. J. Eng. Trans. A: Basics 16 (2003) 163–170. [Google Scholar]
  • N.K. Jain, R. Kumar and B. Kumar Som, An M/M/1/N queuing system with reverse balking. Am. J. Oper. Res. 4 (2014) 17–20. [Google Scholar]
  • B.K. Kumar, P.R. Parthasarathy and M. Sharafali, Transient solution of an M/M/1 queue with balking. Queueing Syst. 13 (1993) 441–448. [Google Scholar]
  • D. Kouvatsos and N. Tabet-Aouel, An ME-based approximation for multi-server queues with preemptive priority. Eur. J. Oper. Res. 77 (1994) 496–515. [Google Scholar]
  • D.D. Kouvatsos, J.S. Alanazi, and K. Smith, A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numer. Algebra Control Optim. (NACO) 1 (2011) 781–816. [Google Scholar]
  • J. Li and L. Liu, On an M/G/1 queue in random environment with Min(N, V) policy. RAIRO: OR 52 (2018) 61–77. [Google Scholar]
  • L. Liu and V.G. Kulkarni, Explicit solutions for the steady state distributions in M/PH/1 queues with workload dependent balking. Queueing Syst. 52 (2006) 251–260. [Google Scholar]
  • L. Liu and V.G. Kulkarni, Busy period analysis for M/PH/1 queues with workload dependent balking. Queueing Syst. 59 (2008) 37–51. [Google Scholar]
  • A. Montazer-Haghighi, J. Medhi and S.G. Mohanty, On a multiserver markovian queueing system with balking and reneging. Comput. Oper. Res. 13 (1986) 421–425. [Google Scholar]
  • B. Natvig, On the transient state probabilities for a queueing model where potential customers are discouraged by queue length. J. Appl. Prob. 11 (1974) 345–354. [Google Scholar]
  • B. Natvig, On a queuing model where potential customers are discouraged by queue length. Scand. J. Stat. 2 (1975) 34–42. [Google Scholar]
  • R.P. Nithya and M. Haridass, Analysis of a queueing system with two phases of bulk service, closedown and vacation interruption. Int. J. Appl. Eng. Res. 11 (2016) 467–468. [Google Scholar]
  • B. Prabhakar, Entropy and the timing capacity of discrete queues. IEEE Trans. Inf. Theor. 49 (2003) 357–370. [Google Scholar]
  • C. Preston, Gibbs States on Countable Sets. Cambridge University Press, London (1974). [Google Scholar]
  • P. Rajadurai, Sensitivity analysis of an M/G/1 retrial queueing system with disaster under working vacations and working breakdowns. RAIRO: OR 52 (2018) 35–54. [Google Scholar]
  • G. Rubin and D.S. Robson, A single server queue with random arrivals and balking: Confidence interval estimation. Queueing Syst. 7 (1990) 283–306. [Google Scholar]
  • C.J. Singh, M. Jain and B. Kumar, Analysis of MX/G/1 queueing model with balking and vacation. Int. J. Oper. Res. 19 (2014) 154–173. [Google Scholar]
  • S.N. Singh and S.B. Tiwari, An application of generalized entropy in queueing theory. J. Appl. Sci. Eng. 16 (2013) 99–103. [Google Scholar]
  • R. Sudhesh, A. Azhagappan and S. Dharmaraja, Transient analysis of M/M/1 queue with working vacation, heterogeneous service and customers’ impatience. RAIRO: OR 51 (2017) 591–606. [Google Scholar]
  • J. Sztrik, Basic Queueing Theory. Faculty of Informatics, University of Debrecen, Hungary (2012). [Google Scholar]
  • M. Toda, R. Kubo and N. Saito, Statistical Physics I. Springer, Berlin (1983). [Google Scholar]
  • K.-H. Wang, S.-L. Chuang and W.-L. Pearn, Maximum entropy analysis to the N policy M/G/1 queueing system with a removable server. Appl. Math. Model. 26 (2002) 1151–1162. [Google Scholar]
  • A.R. Ward and P.W. Glynn, A diffusion approximation for a GI/GI/1 queue with balking or reneging. Queueing Syst. 50 (2005) 371–400. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.