RAIRO-Oper. Res.
Volume 55, Number 1, January-February 2021
Decision and Optimization in Service, Control and Engineering (CoDIT2019-DOSCE)
Page(s) 99 - 113
Published online 03 March 2021
  • J. Abu Qudeiri, H. Yamamoto, R. Ramli and A. Jamali, Genetic algorithm for buffer size and work station capacity in serial-parallel production lines. Artif. Life Rob. 12 (2008) 102–106. [Google Scholar]
  • S.K. Bahadir, Assembly line balancing in garment production by simulation, edited by W. Grzechca. In: Assembly Line – Theory and Practice, IntechOpen (2011). [Google Scholar]
  • K.R. Baker and S.G. Powell, A predictive model for the throughput of simple assembly systems. Eur. J. Oper. Res. 81 (1995) 336–345. [Google Scholar]
  • K.R. Baker, S.G. Powell and D.F. Pyke, Buffered and un-buffered assembly systems with variable processing times. J. Manuf. Oper. Manage. 3 (1990) 200–223. [Google Scholar]
  • K.R. Baker, S.G. Powell and D.F. Pyke, Optimal allocation of work in assembly systems. Manage. Sci. 39 (1993) 101–106. [Google Scholar]
  • R. Bhatnagar and P. Chandra, Variability in assembly and competing systems: effect on performance and recovery. IIE Trans. 26 (1994) 18–31. [Google Scholar]
  • J.H. Blackstone Jr and J.F. Cox III, Designing unbalanced lines-understanding protective capacity and protective inventory. Prod. Plan. Control 13 (2002) 416–423. [Google Scholar]
  • C.C. Chan, C.L. Hui, K.W. Yeung and S.F. Ng, Handling the assembly line balancing problem in the clothing industry using a genetic algorithm. Int. J. Clothing Sci. Technol. 10 (1998) 21–37. [Google Scholar]
  • T.S. Cocks and S.C. Harlock, Computer-aided simulation of production in the sewing room of a clothing factory. J. Text. Inst. 80 (1989) 455–463. [Google Scholar]
  • R. Conway, W. Maxwell, J.O. McClain and L.J. Thomas, The role of work-in-process inventory in serial production lines. Oper. Res. 36 (1988) 229–241. [Google Scholar]
  • B. Das, J.M. Sanchez-Rivas, A. Gacia-Diaz and C.A.A. MacDonald, Computer simulation approach to evaluating assembly line balancing with variable operation times. J. Manuf. Technol. Manage. 2 (2010) 872–887. [Google Scholar]
  • W.J. Doll and M.A. Vonderembse, The evolution of manufacturing systems: towards the post-industrial enterprise. Omega 19 (1991) 401–411. [Google Scholar]
  • T. El-Rayah, The efficiency of balanced and unbalanced production lines. Int. J. Prod. Res. 17 (1997) 61–75. [Google Scholar]
  • S.H. Eryuruk, Clothing assembly line design using simulation and heuristic line balancing techniques. J. Textile Apparel/Tekstil ve Konfeksiyon 22 (2012) 360–368. [Google Scholar]
  • M. Fleischmann, P. Beullens, J.M. Bloemhof-Ruwaard and L.N. Wassenhove, The impact of product recovery on logistics network design. Prod. Oper. Manage. 10 (2001) 156–173. [Google Scholar]
  • G. Fozzard, J. Spragg and D. Tyler, Simulation of flow lines in clothing manufacture. Part 1: model construction. Int. J. Clothing Sci. Technol. 8 (1996) 17–27. [Google Scholar]
  • K. Futamura, The multiple server effect: optimal allocation of servers to stations with different service-time distributions in tandem queueing networks. Ann. Oper. Res. 93 (2000) 71–90. [Google Scholar]
  • H. Gökçen, K. Ağpak and R. Benzera, Balancing of parallel assembly lines. Int. J. Prod. Econ. 103 (2006) 600–609. [Google Scholar]
  • A. Grosfeld-Nir and T. Ben-Zvi, Multistage production systems with random yields and rigid demand. Int. J. Manuf. Technol. Manage. 20 (2010) 286–299. [Google Scholar]
  • V.D.R. Guide and L.N. Wassenhove, Managing product returns for remanufacturing. Prod. Oper. Manage. 10 (2001) 142–155. [Google Scholar]
  • M. Gungor and S. Agac, Resource-constrained mixed model assembly line balancing in an apparel company. J. Textile Apparel/Tekstil ve Konfeksiyon 24 (2014) 405–412. [Google Scholar]
  • M. Güner and C. Üœnal, Line balancing in the apparel industry using simulation techniques. Fibres Textiles Eastern Europe 16 (2008) 75–78. [Google Scholar]
  • C. Harrell, B.K. Ghosh and R.O. Bowden, Simulation Using ProModel. McGraw Hill, New York, NY (2004). [Google Scholar]
  • M. Hillier, Designing unpaced production lines to optimize throughput and work-in-process inventory. IEEE Trans. 45 (2013) 516–527. [Google Scholar]
  • F.S. Hillier and R.W. Boling, The effect of some design factors on the efficiency of production lines with variable element times. J. Ind. Eng. 17 (1966) 651–658. [Google Scholar]
  • S.J.T. Hsieh, Hybrid analytic and simulation models for assembly line design and production planning. Simul. Modell. Pract. Theory 10 (2002) 87–108. [Google Scholar]
  • S. Hudson, T. McNamara and S. Shaaban, Unbalanced lines: where are we now? Int. J. Prod. Res. 53 (2015) 1895–1911. [Google Scholar]
  • S.T. Hutchinson, J.R. Villalobos and M.G. Beruvides, Effects of high labour turnover in a serial assembly environment. Int. J. Prod. Res. 35 (1997) 3201–3223. [Google Scholar]
  • K.C. Jeong and Y.-D. Kim, Technical note: an approximation method for performance analysis of assembly/disassembly systems with parallel-machine stations. IEEE Trans. 31 (1999) 391–394. [Google Scholar]
  • K.C. Jeong and Y.-D. Kim, Heuristics for selecting machines and determining buffer capacities in assembly systems. Comput. Ind. Eng. 38 (2000) 341–360. [Google Scholar]
  • Z. Jia, L. Zhang, J. Arinez and G. Xiao, Performance analysis of assembly systems with Bernoulli machines and finite buffers during transients. IEEE Trans. Autom. Sci. Eng. 13 (2016) 1018–1032. [Google Scholar]
  • S.N. Kadipasaoglu, W. Xiang, S.F. Hurley and B.M. Khumawala, A study on the effect of the extent and location of protective capacity in flow systems. Int. J. Prod. Econ. 63 (2000) 217–228. [Google Scholar]
  • F. Kalaoğlu and C. Saricam, Analysis of modular manufacturing system in clothing industry by using simulation. Fibres Text. Eastern Eur. 15–3 (2007) 93–96. [Google Scholar]
  • M. Kayar and M. Akalin, Comparing the effects of automat use on assembly line performance in the apparel industry by using a simulation method. Fibres Text. Eastern Eur. 23–5 (2015) 114–123. [Google Scholar]
  • M. Kayar and M. Akalin, Comparing heuristic and simulation methods applied to the apparel assembly line balancing problem. Fibres Text. Eastern Eur. 24 (2016) 131–137. [Google Scholar]
  • C.T. Kuo, J.T. Lim, S.M. Meerkov and E. Park, Improvability theory for assembly Systems: two component, one assembly machine case. Math. Prob. Eng. 3 (1996) 95–171. [Google Scholar]
  • A.M. Law, Simulation Modeling and Analysis. Irwin/McGraw-Hill, Illinois, (2007). [Google Scholar]
  • J.W.K. Leung and K.K. Lai, Analysis of strategies for installing parallel stations in assembly systems. Ind. Eng. Manage. Syst. 4 (2005) 117–122. [Google Scholar]
  • J.E. Li, D. Blumenfeld, N.M. Huang and J. Alden, Throughput analysis of production systems: recent advances and future topics. Int. J. Prod. Res. 47 (2009) 3823–3851. [Google Scholar]
  • X.G. Liu and J.A. Buzacott, Approximate models of assembly systems with finite inventory banks. Eur. J. Oper. Res. 45 (1990) 143–54. [Google Scholar]
  • C.E. Lopez, Unbalanced workload allocation in large assembly lines. MS dissertation, Department of Industrial and Systems Engineering, Rochester Institute of Technology (2014). [Google Scholar]
  • K.E. Maani and G.L. Hogg, A stochastic network simulation model for production line systems. Int. J. Prod. Res. 18 (1980) 723–739. [Google Scholar]
  • M.J. Magazine and K.E. Stecke, Throughput for production lines with serial work stations and parallel service facilities. Perform. Eval. 25 (1996) 211–232. [Google Scholar]
  • T. McNamara, S. Shaaban and S. Hudson, Simulation of unbalanced buffer allocation in unreliable unpaced production lines. Int. J. Prod. Res. 51 (2013) 1922–1936. [Google Scholar]
  • T. McNamara, S. Shaaban and S. Hudson, Mean time imbalance effects on unreliable unpaced serial flow line. J. Manuf. Syst. 33 (2014) 357–365. [Google Scholar]
  • L.E. Moberly and F.P. Wyman, An application of simulation to the comparison of assembly line configurations. Decis. Sci. 4 (1973) 505–516. [Google Scholar]
  • A. Patchong and D. Willaeys, Modeling and analysis of an unreliable flow line composed of parallel-machine stages. IIE Trans. 33 (2001) 559–568. [Google Scholar]
  • S.G. Powell, Buffer allocation in unbalanced three-station serial lines. Int. J. Prod. Res. 32 (1994) 2201–2217. [Google Scholar]
  • S.G. Powell and D.F.I. Pyke, Buffering unbalanced assembly systems. IIE Trans. 30 (1998) 55–65. [Google Scholar]
  • M.M. Rahman, F. Nur and S. Talapatra, An integrated framework of applying line balancing in apparel manufacturing organization: a case study. J. Mech. Eng. 44 (2015) 117–123. [Google Scholar]
  • I. Rekhi, S. Chand and H. Moskowitz, A note on optimal allocation of work in stochastic assembly systems. Eur. J. Oper. Res. 137 (2002) 387–393. [Google Scholar]
  • R. Romero-Silva and S. Shaaban, Influence of unbalanced operation time means and uneven buffer allocation on unreliable merging assembly line efficiency. Int. J. Prod. Res. 57 (2019) 1645–1666. [Google Scholar]
  • I. Sabuncuoglu, E. Erel and A.G. Kok, Analysis of assembly systems for interdeparture time variability and throughput. IIE Trans. 34 (2002) 23–40. [Google Scholar]
  • I. Sabuncuoglu, E. Erel and Y. Gocgun, Analysis of serial production lines: characterisation study and a new heuristic procedure for optimal buffer allocation. Int. J. Prod. Res. 44 (2006) 2499–2523. [Google Scholar]
  • S. Shaaban and T. McNamara, Improving the efficiency of unpaced production lines by unbalancing service time means. Int. J. Oper. Res. 4 (2009) 346–361. [Google Scholar]
  • S. Shaaban, T. McNamara and V. Dmitriev, Asymmetrical buffer allocation in unpaced merging assembly lines. Comput. Ind. Eng. 109 (2017) 211–220. [Google Scholar]
  • N. Slack, Work time distributions in production system modelling. Research paper, Oxford Centre for Management Studies (1982). [Google Scholar]
  • B.A. Tan, Three-station merge system with unreliable stations and a shared buffer. Math. Comput. Modell. 33 (2001) 1011–1026. [Google Scholar]
  • F. Thiesse and E. Fleisch, On the value of location information to lot scheduling in complex manufacturing processes. Int. J. Prod. Econ. 112 (2008) 532–547. [Google Scholar]
  • L. Tiacci, Simultaneous balancing and buffer allocation for the design of mixed-model assembly lines with parallel workstations and stochastic task times. Int. J. Prod. Econ. 162 (2015) 201–215. [Google Scholar]
  • M.A. Vonderembse and G.P. White, Core Concepts of Operations Management. Wiley-Higher Education, Hoboken, NJ, (2004). [Google Scholar]
  • World Trade Organization, International Trade Statistics 2014. Available at: (Accessed: July 29, 2016). [Google Scholar]
  • M.F. Yegul, F.S. Erenay, S. Striepe and M. Yavuz, Improving configuration of complex production lines via simulation-based optimization. Comput. Ind. Eng. 109 (2017) 295–312. [Google Scholar]
  • J. Zielinski and M. Czacherska, Optimisation of the work of a sewing team by using computer simulation. Fibres Text. Eastern Eur. 12 (2004) 78–82. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.