RAIRO-Oper. Res.
Volume 55, Number 1, January-February 2021
Decision and Optimization in Service, Control and Engineering (CoDIT2019-DOSCE)
Page(s) 83 - 97
Published online 03 March 2021
  • M. Akbari, S. Molla-Alizadeh-Zavardehi, S. Niroomand and Meta-heuristic approaches for fixed-charge solid transportation problem in two-stage supply chain network. Oper. Res. 20 (2020) 447–471. [Google Scholar]
  • F.J. Arroyo-Canada and J. Gil-Lafuente, A fuzzy asymmetric TOPSIS model for optimizing investment in online advertising campaigns. OR (2017) 1–16. [Google Scholar]
  • M. Arslan and M. Çunkaş, Performance evaluation of sugar plants by fuzzy technique for order performance by similarity to ideal solution (TOPSIS). Cyber. Syst. 43 (2012) 529–548. [Google Scholar]
  • I. Beg and T. Rashid, Modelling uncertainties in multi-criteria decision making using distance measure and TOPSIS for hesitant fuzzy sets. Arti. Intel Soft Comp. Res. 7 (2017) 103–109. [Google Scholar]
  • D.Y. Chang, Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 95 (1996) 649–655. [Google Scholar]
  • C.T. Chen, Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst. 114 (2000) 1–9. [Google Scholar]
  • S.J. Chen and C.L. Hwang, Fuzzy Multiple Attribute Decision Making. Vol. 375 of Lecture Notes in Economics and Mathematical Systems. Springer, Berlin-Heidelberg (1992). [CrossRef] [Google Scholar]
  • T.Y. Chou, C.L. Hsu and M.C. Chen, A fuzzy multi-criteria decision model for international tourist hotels location selection. Int. J. Hosp. Manag. 27 (2008) 293–301. [Google Scholar]
  • D. Dalalah, M. Hayajneh and F. Batieha, A fuzzy multi-criteria decision making model for supplier selection. Expert Syst. Appl. 38 (2011) 8384–8391. [Google Scholar]
  • D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Application. Academic Press, New York, NY (1980). [Google Scholar]
  • G. Dwivedi, R.K. Srivastava and S.K. Srivastava, A generalised fuzzy TOPSIS with improved closeness coefficient. Expert Syst. Appl. 96 (2018) 185–195. [Google Scholar]
  • L. Fang and H. Li, Multi-criteria decision analysis for efficient location-allocation problem combining DEA and goal programming. RAIRO:OR 49 (2015) 753–772. [Google Scholar]
  • A. Hadi-Vencheh and M.N. Mokhtarian, A new fuzzy MCDM approach based on centroid of fuzzy numbers. Expert Syst. Appl. 38 (2011) 5226–5230. [Google Scholar]
  • S.H.R. Hajiagha, H.A. Mahdiraji, S.S. Hashemi and E.K. Zavadskas, Evolving a linear programming technique for MAGDM problems with interval valued intuitionistic fuzzy information. Expert Syst. Appl. 42 (2015) 9318–9325. [Google Scholar]
  • H. Han and S. Trimi, A fuzzy TOPSIS method for performance evaluation of reverse logistics in social commerce platforms. Expert Syst. Appl. 103 (2018) 133–145. [Google Scholar]
  • A. Hatami-Marbini and F. Kangi, An extension of fuzzy TOPSIS for a group decision making with an application to Tehran stock exchange. Appl. Soft Comp. 52 (2017) 1084–1097. [Google Scholar]
  • C.L. Hwang and K. Yoon, Multiple Attribute Decision Making Methods and Applications A State-of-the-Art Survey. Vol. 186 of Lecture Notes in Economics and Mathematical Systems. Springer, Berlin-Heidelberg (1981). [CrossRef] [Google Scholar]
  • G.R. Jahanshahloo, F. Hosseinzadeh Lotfi andM. Izadikhah, Extension of the TOPSIS method for decision-making problems with fuzzy data. Appl. Math. Comp. 181 (2006) 1544–1551. [Google Scholar]
  • D. Joshi and S. Kumar, Improved accuracy function for interval-valued intuitionistic fuzzy sets and its application to multi-attributes group decision making. Cyber. Syst. 49 (2018) 64–76. [Google Scholar]
  • M. Kabak, E. Köse, O. Krlmaz and S. Burmaoğlu, A fuzzy multi-criteria decision making approach to assess building energy performance. Ener. Build. 72 (2014) 382–389. [Google Scholar]
  • A. Kauffman and M.M. Gupta, Introduction to Fuzzy Arithmetic: Theory and Application. Van Nostrand Reinhold, New York, NY (1991). [Google Scholar]
  • H.A. Khalifa and Utilizing a new approach for solving fully fuzzy linear programming problems. C OR Rev. 10 (2019) 337–344. [Google Scholar]
  • A. Kumar, J. Kaur and P. Singh, A new method for solving fully fuzzy linear programming problems. Appl. Math. Model. 35 (2011) 817–823. [Google Scholar]
  • T.S. Liou and M.J.J. Wang, Ranking fuzzy numbers with integral value. Fuzzy Sets Syst. 50 (1992) 247–255. [Google Scholar]
  • S. Ljubojević, D. Pamučar, D. Jovanović and V. Vešović, Outsourcing transport service: a fuzzy multi-criteria methodology for provider selection based on comparison of the real and ideal parameters of providers. Oper. Res. 1–35 (2017). [Google Scholar]
  • J.C. López, P.A.Á. Carrillo, D.A.G. Chavira and J.J.S. Noriega, A web-based group decision support system for multicriteria ranking problems. Oper. Res. 17 (2017) 499–534. [Google Scholar]
  • M.N. Mokhtarian and A. Hadi-Vencheh, A new fuzzy TOPSIS method based on left and right scores: an application for determining an industrial zone for dairy products factory. Appl. Soft Comp. 12 (2012) 2496–2505. [Google Scholar]
  • M. Naili, A. Boubetra, A. Tari, Y. Bouguezza and A. Achroufene, Brain-inspired method for solving fuzzy multi-criteria decision making problems (BIFMCDM). Expert Syst. Appl. 42 (2015) 2173–2183. [Google Scholar]
  • H.S. Najafi and S.A. Edalatpanah, A note on “A new method for solving fully fuzzy linear programming problems”. Appl. Math. Model. 37 (2013) 7865–7867. [Google Scholar]
  • S. Niroomand, A. Mahmoodirad, A. Heydari, F. Kardani and A. Hadi-Vencheh, An extension principle based solution approach for shortest path problem with fuzzy arc lengths. Oper. Res. 17 (2017) 395–411. [Google Scholar]
  • S. Niroomand, N. Mirzaei and A. Hadi-Vencheh, A simple mathematical programming model for countries’ credit ranking problem. Int. J. Finance Econ. 24 (2019) 449–460. [Google Scholar]
  • E.Y. Peraei, H.R. Maleki and M. Mashinchi, A method for solving a fuzzy linear programming. K. J. Comp. Appl. Math. 8 (2001) 347–356. [Google Scholar]
  • A. Ruiz-Padillo, D.P. Ruiz, A.J. Torija and Á. Ramos-Ridao, Selection of suitable alternatives to reduce the environmental impact of road traffic noise using a fuzzy multi-criteria decision model. Envir. Impact Asse. Rev. 61 (2016) 8–18. [Google Scholar]
  • S.A. Sadabadi, A. Hadi-Vencheh, A. Jamshidi and M. Jalali, A new index for TOPSIS based on relative distance to best and worst points. Int. J. Info. Tech. Decis. Making 19 (2020) 695–719. [Google Scholar]
  • M. Tavana, M. Keramatpour, F.J. Santos-Arteaga and E. Ghorbaniane, A fuzzy hybrid project portfolio selection method using data envelopment analysis, TOPSIS and integer programming. Expert Syst. Appl. 42 (2015) 8432–8444. [Google Scholar]
  • Y.M. Wang and T. Elhag, Fuzzy TOPSIS method based on alpha level sets with an application to bridge risk assessment. Expert Sys Appl. 31 (2006) 309–319. [Google Scholar]
  • J.J. Wang, Y.Y. Jing, C.F. Zhang, G.H. Shi and X.T. Zhang, A fuzzy multi-criteria decision-making model for trigeneration system. Ener. Poli. 36 (2008) 3823–3832. [Google Scholar]
  • P. Wanke, M.A.K. Azad, C.P. Barros and A. Hadi-Vencheh, Predicting performance in ASEAN banks: an integrated fuzzy MCDM–neural network approach. Expert Syst. 33 (2016) 213–229. [Google Scholar]
  • G. Wei, F.E. Alsaadi, T. Hayat and A. Alsaedi, A linear assignment method for multiple criteria decision analysis with hesitant fuzzy sets based on fuzzy measure. Int. J. Fuzzy Syst. 19 (2017) 607–614. [CrossRef] [Google Scholar]
  • B. Yatsalo, A. Korobov and L. Martnez, Fuzzy multi-criteria acceptability analysis: a new approach to multi-criteria decision analysis under fuzzy environment. Expert Syst. Appl. 84 (2017) 262–271. [Google Scholar]
  • D. Yong and L. Qi, A TOPSIS-based centroid-index ranking method of fuzzy numbers and its application in decision-making. Cybern. Syst. 36 (2007) 581–595. [Google Scholar]
  • A. Yücel and A.F. Güneri, A weighted additive fuzzy programming approach for multi-criteria supplier selection. Expert Syst. Appl. 38 (2011) 6281–6286. [Google Scholar]
  • L.A. Zadeh, Fuzzy sets. Inf. Cont. 8 (1965) 338–353. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.