Free Access
Issue
RAIRO-Oper. Res.
Volume 55, Number 1, January-February 2021
Page(s) 213 - 229
DOI https://doi.org/10.1051/ro/2020143
Published online 12 March 2021
  • B.P. Acton, R.J. Foti, R.G. Lord and J.A. Gladfelter, Putting emergence back in leadership emergence: a dynamic, multilevel, process-oriented framework. Leadership Q. 30 (2019) 145–164. [Google Scholar]
  • E. Aggelopoulos and A. Georgopoulos, Bank branch efficiency under environmental change: a bootstrap DEA on monthly profit and loss accounting statements of Greek retail branches. Eur. J. Oper. Res. 261 (2017) 1170–1188. [Google Scholar]
  • G.R. Amin and M. Toloo, A polynomial-time algorithm for finding epsilon in DEA models. Comput. Oper. Res. 31 (2004) 803–805. [Google Scholar]
  • P. Anderson and N.C. Petersen, A procedure for ranking efficient units in data envelopment analysis. Manage. Sci. 39 (1993) 1261–1264. [Google Scholar]
  • B.J. Avolio, Promoting more integrative strategies for leadership theory-building. Am. Psychol. 62 (2007) 25–33. [PubMed] [Google Scholar]
  • A. Azar, M. Zarei Mahmoudabadi and A. Emrouznejad, A new fuzzy additive model for determining the common set of weights in Data Envelopment Analysis. J. Intell. Fuzzy Syst. 30 (2016) 61–69. [Google Scholar]
  • R.D. Banker and R.C. Morey, Efficiency analysis for exogenously fixed inputs and outputs. Eur. J. Oper. Res. 34 (1986) 513–521. [Google Scholar]
  • C.P. Barros and P. Wanke, Banking efficiency in Brazil. J. Int. Financial Markets Inst. Money 28 (2014) 54–65. [Google Scholar]
  • B.M. Bass, Bass and Stogdill’s Handbook of Leadership., Free Press, New York (1990). [Google Scholar]
  • C. Beidleman, Income smoothing: the role of management. Acc. Rev. 48 (1973) 653–667. [Google Scholar]
  • H. Bjurek, L. Hjalmarsson and F.R. Førsund, Deterministic parametric and nonparametric estimation of efficiency in service production: a comparison. J. Econ. 46 (1990) 213–227. [Google Scholar]
  • A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision-making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
  • A. Charnes, W.W. Cooper, A.Y. Lewin and L.M. Seiford, Data Envelopment Analysis: Theory Methodology and Applications. Kluwer Academic Publishers, Boston (1994) 1–528. [Google Scholar]
  • S.M. Chen, Fuzzy system reliability analysis using fuzzy number arithmetic operations. Fuzzy Sets Syst. 66 (1994) 31–38. [Google Scholar]
  • C.I. Chiang, M.J. Hwang and Y.H. Liu, Determining a common set of weights in a DEA problem using a separation vector. Math. Comput. Model. 54 (2011) 2464–2470. [Google Scholar]
  • W.D. Cook, M. Kress and L.M. Seiford, Prioritization models for frontier decision making units in DEA. Eur. J. Oper. Res. 59 (1992) 319–323. [Google Scholar]
  • W.D. Cook, M. Kress and L.M. Seiford, Data envelopment analysis in the presence of both quantitative and qualitative factors. J. Oper. Res. Soc. 47 (1996) 945–953. [Google Scholar]
  • K. Cullinane and T.-F. Wang, Data envelopment analysis (DEA) and improving container port efficiency. Res. Transp. Econ. 17 (2007) 517–566. [Google Scholar]
  • C.C. Defee, T.P. Stank and T.L. Esper, Performance implications of transformational supply chain leadership and followership. Int. J. Phys. Distrib. Logistics Manage. 40 (2010) 763–779. [Google Scholar]
  • A. Deville, G.D. Ferrier and H. Leleu, Measuring the performance of hierarchical organizations: an application to bank efficiency at the regional and branch levels. Manage. Acc. Res. 25 (2014) 30–44. [Google Scholar]
  • P.J. DiMaggio and W.W. Powell, The iron cage revisited: institutional isomorphism and collective rationality in organizational fields. Am. Soc. Rev. 48 (1983) 147–160. [Google Scholar]
  • L. Drake, M.J.B. Hall and R. Simper, The impact of macroeconomic and regulatory factors on bank efficiency: a non-parametric analysis of Hong Kong’s banking system. J. Banking Finance 40 (2006) 1443–1466. [Google Scholar]
  • E. Esposito and R. Passaro, Evolution of the supply chain in the Italian railway industry. Suppl. Chain Manage. 14 (2009) 303–313. [Google Scholar]
  • F.D.S. Fernandes, C. Stasinakis and V. Bardarova, Two-stage DEA-Truncated Regression: application in banking efficiency and financial development. Expert Syst. App. 96 (2018) 284–301. [Google Scholar]
  • C. Giachetti and S. Torrisi, Following or running away from the market leader? The influences of environmental uncertainty and market leadership. Eur. Manage. Rev. 15 (2018) 445–463. [Google Scholar]
  • R. Gulati and S. Kumar, Analysing banks’ intermediation and operating efficiencies using the two-stage network DEA model. Int. J. Prod. Perform. Manage. 66 (2017) 500–516. [Google Scholar]
  • A. Hatami-Marbini, A. Emrouznejad and M. Tavana, A taxonomy and review of the fuzzy data envelopment analysis literature: two decades in the making. Eur. J. Oper. Res. 214 (2011) 457–472. [Google Scholar]
  • A. Hatami-Marbini, M. Tavana, P.J. Agrell, L.F. Hosseinzadeh and Z. Ghelej Beigi, A common-weights DEA model for centralized resource reduction and target setting. Comput. Ind. Eng. 79 (2015) 195–203. [Google Scholar]
  • P. Haunschild and A. Miner, Modes of interorganizational imitation: the effects of outcome salience and uncertainty. Admin. Sci. Q. 42 (1997) 472–500. [Google Scholar]
  • N. Hiller, L. DeChurch, T. Murase and D. Doty, Searching for outcomes of leadership: a 25-year review. J. Manage. 37 (2011) 1137–1177. [Google Scholar]
  • D. Holod and H.F. Lewis, Resolving the deposit dilemma: a new DEA bank efficiency model. J. Banking Finance 35 (2011) 2801–2810. [Google Scholar]
  • H.-C. Hsiao, H. Chang, A.M. Cianci and L.-H. Huang, First financial restructuring and operating efficiency: evidence from Taiwanese commercial banks. J. Banking Finance 34 (2010) 1461–1471. [Google Scholar]
  • Z.S. Hua, Y.W. Bian and L. Liang, Eco-efficiency analysis of paper mills along the Huai River: an extended DEA approach. Omega 35 (2007) 578–587. [Google Scholar]
  • T.-H. Huang, K.-C. Chen and C.-I. Lin, An extension from network DEA to Copula-based network SFA: evidence from the U.S. commercial banks in 2009. Q. Rev. Econ Finance 67 (2018) 51–62. [Google Scholar]
  • J.-M. Huguenin, Data Envelopment Analysis and non-discretionary inputs: How to select the most suitable model using multi-criteria decision analysis. Expert Syst. App. 42 (2015) 2570–2581. [Google Scholar]
  • G.R. Jahanshahloo, H.V. Junior, F.H. Lotfi and D. Akbarian, A new DEA ranking system based on changing the reference set. Eur. J. Oper. Res. 181 (2007) 331–337. [Google Scholar]
  • G.R. Jahanshahloo, F. HosseinzadehLotfi, M. Khanmohammadi, M. Kazemimanesh and V. Rezaie, Ranking of units by positive ideal DMU with common weights. Expert Syst. App. 37 (2010) 7483–7488. [Google Scholar]
  • T.A. Judge, J.E. Bono, R. Ilies and M.W. Gerhardt, Personality and leadership: A qualitative and quantitative review. J. Appl. Psychol. 87 (2002) 765–780. [PubMed] [Google Scholar]
  • M. Kadziński, A. Labijak and M. Napieraj, Integrated framework for robustness analysis using ratio-based efficiency model with application to evaluation of Polish airports. Omega 67 (2017) 1–18. [Google Scholar]
  • S. Kaffash, R.K. Matin and M. Tajik, A directional semi-oriented radial DEA measure: an application on financial stability and the efficiency of banks. Ann. Oper. Res. 264 (2018) 213–234. [Google Scholar]
  • F. Kamarudin, F. Sufian, F.W. Loong and N.A.M. Anwar, Assessing the domestic and foreign Islamic banks efficiency: insights from selected Southeast Asian countries. Future Bus. J. 3 (2017) 33–46. [Google Scholar]
  • C. Kao and H.T. Hung, Data envelopment analysis with common weights: the compromise solution approach. J. Oper. Res. Soc. 56 (2005) 1196–1203. [Google Scholar]
  • D.J. Ketchen, J. Charles, C. Snow and V.L. Hoover, Research on competitive dynamics: recent accomplishments and future challenges. J. Manage. 30 (2004) 779–804. [Google Scholar]
  • R. Kiani Mavi, S. Kazemi and J.M. Jahangiri, Developing common set of weights with considering nondiscretionary inputs and using ideal point method. J. Appl. Math. 2013 (2013) 1–9. [Google Scholar]
  • G. Lanine and R.V. Vennet, Failure prediction in the Russian bank sector with logit and trait recognition models. Expert Syst. App. 30 (2006) 463–478. [Google Scholar]
  • A.E. LaPlante and J.C. Paradi, Evaluation of bank branch growth potential using data envelopment analysis. Omega 52 (2015) 33–41. [Google Scholar]
  • H. Li, C. Chen, W.D. Cook, J. Zhang and J. Zhu, Two-stage network DEA: Who is the leader? Omega 74 (2018) 15–19. [Google Scholar]
  • M.B. Lieberman and S. Asaba, Why do firms imitate each other?. Acad. Manage. Rev. 31 (2006) 366–385. [Google Scholar]
  • M.B. Lieberman and D.B. Montgomery, First-mover advantages. Strategic Manage. J. 9 (1988) 41–58. [Google Scholar]
  • F.-H.F. Liu and H.H. Peng, Ranking of units on the DEA frontier with common weights. Comput. Oper. Res. 35 (2008) 1624–1637. [Google Scholar]
  • R.G. Lord, D.V. Day, S.J. Zaccaro, B.J. Avolio and A.H. Eagly, Leadership in applied psychology: three waves of theory and research. J. Appl. Psychol. 102 (2017) 434–451. [PubMed] [Google Scholar]
  • A. Lozano-Vivas, J.T. Pastor and J.M. Pastor, An efficiency comparison of European banking systems operating under different environmental conditions. J. Prod. Anal. 18 (2002) 59–77. [Google Scholar]
  • A.W. Mackelprang, E. Bernardes, G.J. Burke and C. Welter, Supplier innovation strategy and performance: a matter of supply chain market positioning. Decis. Sci. 49 (2018) 660–689. [Google Scholar]
  • M. Mamonov and A. Vernikov, Bank ownership and cost efficiency: new empirical evidence from Russia. Econ. Syst. 41 (2017) 305–319. [Google Scholar]
  • K. Matthews, Risk management and managerial efficiency in Chinese banks: a network DEA framework. Omega 41 (2013) 207–215. [Google Scholar]
  • M.S. Mizruchi and L.C. Fein, The social construction of organizational knowledge: a study of the uses of coercive, mimetic, and normative isomorphism. Admin. Sci. Q. 44 (1999) 653–683. [Google Scholar]
  • O.B. Olesen and N.C. Petersen, Stochastic data envelopment analysis: a review. Eur. J. Oper. Res. 251 (2016) 2–21. [Google Scholar]
  • J. Ouenniche and S. Carrales, Assessing efficiency profiles of UK commercial banks: a DEA analysis with regression-based feedback. Ann. Oper. Res. 266 (2018) 551–587. [Google Scholar]
  • J.C. Paradi and H. Zhu, A survey on bank branch efficiency and performance research with data envelopment analysis. Omega 41 (2013) 61–79. [Google Scholar]
  • A. Payan, Common set of weights approach in fuzzy DEA with an application. J. Intel. Fuzzy Syst. 29 (2015) 187–194. [Google Scholar]
  • M.E. Porter, Competitive Strategy: Techniques for Analyzing Industries and Competitors. Free Press, New York (1980). [Google Scholar]
  • J. Puri and S.P. Yadav, A fuzzy DEA model with undesirable fuzzy outputs and its application to the banking sector in India. Expert Syst. App. 41 (2014) 6419–6432. [Google Scholar]
  • J. Ruggiero, On the measurement of technical efficiency in the public sector. Eur. J. Oper. Res. 90 (1996) 553–565. [Google Scholar]
  • J. Ruggiero, Nondiscretionary inputs in data envelopment analysis. Eur. J. Oper. Res. 111 (1998) 461–469. [Google Scholar]
  • S. Saati, A. Memariani and G.R. Jahanshahloo, Efficiency analysis and ranking of DMUs with fuzzy data. Fuzzy Optim. Decis. Making 1 (2002) 255–267. [Google Scholar]
  • S. Saati, A. Hatami-Marbini, J. Per, P.J. Agrell and M. Tavana, A common set of weight approach using an ideal decision-making unit in data envelopment analysis. J. Ind. Manage. Optim. 8 (2012) 623–637. [Google Scholar]
  • M. Salahi and M. Toloo, In the determination of the most efficient decision making unit in data envelopment analysis: a comment. Comput. Ind. Eng. 104 (2017) 216–218. [Google Scholar]
  • N.R. Sanders, IT alignment in supply chain relationships: a study of supplier benefits. J. Suppl. Chain Manage. 41 (2005) 4–13. [Google Scholar]
  • J. Shyu and T. Chiang, Measuring the true managerial efficiency of bank branches in Taiwan: a three-stage DEA analysis. Expert Syst. Appl. 39 (2012) 11494–11502. [Google Scholar]
  • T.C. Silva, B.M. Tabak, D.O. Cajueiro and M.V.B. Dias, A comparison of DEA and SFA using micro- and macro-level perspectives: efficiency of Chinese local banks. Phys. A: Stat. Mech. App. 469 (2017) 216–223. [Google Scholar]
  • Z. Svitalkova, Comparison and evaluation of bank efficiency in selected countries in EU. Proc. Econ. Finance 12 (2014) 644–653. [Google Scholar]
  • K.G. Smith, W.J. Ferrier and C.M. Grimm, King of the hill: dethroning the industry leader. Acad. Manage. Executive 15 (2001) 59–70. [Google Scholar]
  • M. Soleimani-Damaneh, G.R. Jahanshahloo and S. Abbasbandy, Computational and theoretical pitfalls in some current performance measurement techniques and a new approach. Appl. Math. Comput. 181 (2006) 1199–1207. [Google Scholar]
  • C. Staikouras, E. Mamatzakis and A. Koutsomanoli-Filippaki, Cost efficiency of the banking industry in the South Eastern European region. J. Int. Financial Markets Inst. Money 18 (2008) 483–497. [Google Scholar]
  • J. Sun, J. Wu and D. Guo, Performance ranking of units considering ideal and anti-ideal DMU with common weights. App. Math. Model. 37 (2013) 6301–6310. [Google Scholar]
  • M. Tavana, S. Kazemi and R. Kiani Mavi, A stochastic data envelopment analysis model using a common set of weights and the ideal point concept. Int. J. Appl. Manage. Sci. 7 (2015) 81–92. [Google Scholar]
  • M. Tavana, K. Khalili-Damghani, F.J. Santos Arteaga, R. Mahmoudi and A. Hafezalkotob, Efficiency decomposition and measurement in two-stage fuzzy DEA models using a bargaining game approach. Comput. Ind. Eng. 118 (2018) 394–408. [Google Scholar]
  • M. Toloo, Selecting and full ranking suppliers with imprecise data: a new DEA method. Int. J. Adv. Manuf. Technol. 74 (2014) 1141–1148. [Google Scholar]
  • M. Toloo, Alternative minimax model for finding the most efficient unit in data envelopment analysis. Comput. Ind. Eng. 81 186–194. [Google Scholar]
  • M. Toloo and T. Ertay, The most cost efficient automotive vendor with price uncertainty: a new DEA approach. Measurement 52 (2014) 135–144. [Google Scholar]
  • M. Toloo and A. Kresta, Finding the best asset financing alternative: a DEA-WEO approach. Measurement 55 (2014) 288–294. [Google Scholar]
  • M. Toloo and M. Salahi, A powerful discriminative approach for selecting the most efficient unit in DEA. Comput. Ind. Eng. 115 (2018) 269–277. [Google Scholar]
  • M. Toloo and T. Tichy, Two alternative approaches for selecting performance measures in data envelopment analysis. Measurement 65 (2015) 29–40. [Google Scholar]
  • M. Uhl-Bien, R. Marion and B. McKelvey, Complexity leadership theory: shifting leadership from the industrial age to the knowledge era. Leadership Q. 18 (2007) 298–318. [Google Scholar]
  • M.I.M. Wahab, D. Wu and C.-G. Lee, A generic approach to measuring the machine flexibility of manufacturing systems. Eur. J. Oper. Res. 186 (2008) 137–149. [Google Scholar]
  • Y.M. Wang, Y. Luo and Y.X. Lan, Common weights for fully ranking decision-making units by regression analysis. Expert Syst. App. 38 (2011) 9122–9128. [Google Scholar]
  • W.-K. Wang, W.-M. Lu and P.-Y. Liu, A fuzzy multi-objective two-stage DEA model for evaluating the performance of US bank holding companies. Expert Syst. App. 41 (2014) 4290–4297. [Google Scholar]
  • K. Wang, W. Huang, J. Wu, Y.N. Liu, Efficiency measures of the Chinese commercial banking system using an additive two-stage DEA. Omega 44 (2014) 5–20. [Google Scholar]
  • P. Wanke and C. Barros, Two-stage DEA: an application to major Brazilian banks. Expert Syst. App. 41 (2014) 2337–2344. [Google Scholar]
  • P. Wanke, C.P. Barros and A. Emrouznejad, Assessing productive efficiency of banks using integrated fuzzy-DEA and bootstrapping: a case of Mozambican Banks. Eur. J. Oper. Res. 249 (2016) 378–389. [Google Scholar]
  • J. Wu, L. Liang and M. Song, Performance based clustering for benchmarking of container ports: an application of DEA and cluster analysis technique. Int. J. Comput. Intel. Syst. 3 (2010) 709–722. [Google Scholar]
  • G.A. Yukl, Leadership in Organizations. Prentice Hall, Englewood Cliffs, NJ (2001). [Google Scholar]
  • L.A. Zadeh, Fuzzy sets. Inf. Control 8 (1965) 338–353. [Google Scholar]
  • L.M. Zerafat Angiz, A. Emrouznejad, A. Mustafa and A.S. Al-Eraqi, Aggregating preference ranking with fuzzy data envelopment analysis. Knowl.-Based Syst. 23 (2010) 512–519. [Google Scholar]
  • J. Zhang, C. Jiang, B. Qu and P. Wang, Market concentration risk-taking and bank performance: evidence from emerging economies International. Rev. Financial Anal. 30 (2013) 149–157. [Google Scholar]
  • H. Zhao and S. Kang, Banking Performance Evaluation in China based on non-radial super-efficiency data envelopment analysis. Procedia Economics and Finance 23 (2015) 197–202. [Google Scholar]
  • X. Zhou, R. Luo, Y. Tu, B. Lev and W. Pedrycz, Data envelopment analysis for bi-level systems with multiple followers. Omega 77 (2018) 180–188. [Google Scholar]
  • X. Zhou, Z. Xu, J. Chai, L. Yao, S. Wang and B. Lev, Efficiency evaluation for banking systems under uncertainty: a multi-period three-stage DEA model. Omega 85 (2019) 68–82. [Google Scholar]
  • W. Zhu, Y. Yu, P. Sun, Data envelopment analysis cross-like efficiency model for non-homogeneous decision-making units: the case of United States companies’ low-carbon investment to attain corporate sustainability. Eur. J. Oper. Res. 269 (2018) 99–110. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.