Free Access
Issue
RAIRO-Oper. Res.
Volume 55, Number 2, March-April 2021
Page(s) 505 - 520
DOI https://doi.org/10.1051/ro/2020142
Published online 31 March 2021
  • A. Amirteimoori and A. Emrouznejad, Input/output deterioration in production processes. Expert Syst. App. 38 (2011) 5822–5825. [Google Scholar]
  • A. Amirteimoori and A. Emrouznejad, Optimal input/output reduction in production processes. Decis. Support Syst. 52 (2012) 742–747. [Google Scholar]
  • A. Amirteimoori and S. Kordrostami, Allocating fixed costs and target setting: a DEA-based approach. Appl. Math. Comput. 171 (2005) 136–151. [Google Scholar]
  • A. Amirteimoori and M. Shafiei, Characterizing an equitable omission of shared resources: a DEA-based approach. Appl. Math. Comput. 177 (2006) 18–23. [Google Scholar]
  • A. Amirteimoori and M.M. Tabar, Resource allocation and target setting in data envelopment analysis. Expert Syst. App. 37 (2010) 3036–3039. [Google Scholar]
  • M. Asmild, J.C. Paradi and J.T. Pastor, Centralized resource allocation BCC models. Omega 37 (2009) 40–49. [Google Scholar]
  • A.D. Athanassopoulos, Decision support for target-based resource allocation of public services in multiunit and multilevel systems. Manage. Sci. 44 (1998) 173–187. [Google Scholar]
  • J.E. Beasley, Allocating fixed costs and resources via data envelopment analysis. Eur. J. Oper. Res. 147 (2003) 198–216. [Google Scholar]
  • G. Bi, J. Ding, Y. Luo and L. Liang, Resource allocation and target setting for parallel production system based on DEA. Appl. Math. Modell. 35 (2011) 4270–4280. [Google Scholar]
  • A. Charnes and W.W. Cooper, Programming with linear fractional functionals. Nav. Res. Logistics Q. 9 (1962) 181–186. [Google Scholar]
  • W.D. Cook and M. Kress, Characterizing an equitable allocation of shared costs: a DEA approach. Eur. J. Oper. Res. 119 (1999) 652–661. [Google Scholar]
  • W.D. Cook and J. Zhu, Allocation of shared costs among decision making units: a DEA approach. Comput. Oper. Res. 32 (2005) 2171–2178. [Google Scholar]
  • T. Ding, Y. Chen, H. Wu and Y. Wei, Centralized fixed cost and resource allocation considering technology heterogeneity: a DEA approach. Ann. Oper. Res. 268 (2018) 497–511. [Google Scholar]
  • A. Emrouznejad and G.L. Yang, A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Soc.-Econ. Planning Sci. 61 (2018) 4–8. [CrossRef] [Google Scholar]
  • L. Fang, A generalized DEA model for centralized resource allocation. Eur. J. Oper. Res. 228 (2013) 405–412. [Google Scholar]
  • B. Golany and E. Tamir, Evaluating efficiency-effectiveness-equality trade-offs: a data envelopment analysis approach. Manage. Sci. 41 (1995) 1172–1184. [Google Scholar]
  • A. Hatami-Marbini, M. Tavana, P.J. Agrell, F.H. Lotfi and Z.G. Beigi, A common-weights DEA model for centralized resource reduction and target setting. Comput. Ind. Eng. 79 (2015) 195–203. [Google Scholar]
  • A. Hatami-Marbini, Z.G. Beigi, H. Fukuyama and K. Gholami, Modeling centralized resources allocation and target setting in imprecise data envelopment analysis. Int. J. Inf. Technol. Decis. Making 14 (2015) 1189–1213. [Google Scholar]
  • G.R. Jahanshahloo, F.H. Lotfi, N. Shoja and M. Sanei, An alternative approach for equitable allocation of shared costs by using DEA. Appl. Math. Comput. 153 (2004) 267–274. [Google Scholar]
  • G.R. Jahanshahloo, F.H. Lotfi and M. Moradi, A DEA approach for fair allocation of common revenue. Appl. Math. Comput. 160 (2005) 719–724. [Google Scholar]
  • C. Kao, Efficiency measurement for parallel production systems. Eur. J. Oper. Res. 196 (2009) 1107–1112. [Google Scholar]
  • M. Khodabakhshi and K. Aryavash, The fair allocation of common fixed cost or revenue using DEA concept. Ann. Oper. Res. 214 (2014) 187–194. [Google Scholar]
  • P. Korhonen and M. Syrjänen, Resource allocation based on efficiency analysis. Manage. Sci. 50 (2004) 1134–1144. [Google Scholar]
  • Y. Li, Research on fixed cost allocation method based on DEA Theory. Doctoral dissertation, University of Science and Technology of China, Hefei (2008). [Google Scholar]
  • H. Li, W. Yang, Z. Zhou and C. Huang, Resource allocation models’ construction for the reduction of undesirable outputs based on DEA methods. Math. Comput. Modell. 58 (2013) 913–926. [Google Scholar]
  • Y. Li, F. Li, A. Emrouznejad, L. Liang and Q. Xie, Allocating the fixed cost: an approach based on data envelopment analysis and cooperative game. Ann. Oper. Res. 274 (2019) 373–394. [Google Scholar]
  • R. Lin, Allocating fixed costs or resources and setting targets via data envelopment analysis. Appl. Math. Comput. 217 (2011) 6349–6358. [Google Scholar]
  • R. Lin and Z. Chen, Fixed input allocation methods based on super CCR efficiency invariance and practical feasibility. Appl. Math. Modell. 40 (2016) 5377–5392. [Google Scholar]
  • F.H.F. Liu and C.L. Chen, The worst-practice DEA model with slack-based measurement. Comput. Ind. Eng. 57 (2009) 496–505. [Google Scholar]
  • F.H. Lotfi, A. Hatami-Marbini, P.J. Agrell, N. Aghayi and K. Gholami, Allocating fixed resources and setting targets using a common-weights DEA approach. Comput. Ind. Eng. 64 (2013) 631–640. [Google Scholar]
  • S. Lozano and G. Villa, Centralized resource allocation using data envelopment analysis. J. Prod. Anal. 22 (2004) 143–161. [Google Scholar]
  • S. Lozano, G. Villa and B. Adenso-Dıaz, Centralised target setting for regional recycling operations using DEA. Omega 32 (2004) 101–110. [Google Scholar]
  • S. Lozano, G. Villa and R. Brännlund, Centralised reallocation of emission permits using DEA. Eur. J. Oper. Res. 193 (2009) 752–760. [Google Scholar]
  • N. Nasrabadi, A. Dehnokhalaji, N.A. Kiani, P.J. Korhonen and J. Wallenius, Resource allocation for performance improvement. Ann. Oper. Res. 196 (2012) 459–468. [Google Scholar]
  • J. Sun and G. Li, Designing a double auction mechanism for the re-allocation of emission permits. Ann. Oper. Res. 291 (2020) 847–874. [Google Scholar]
  • J. Sun, Y. Fu, X. Ji and R.Y. Zhong, Allocation of emission permits using DEA-game-theoretic model. Oper. Res. 17 (2017) 867–884. [Google Scholar]
  • J. Sun, C. Wang, X. Ji and J. Wu, Performance evaluation of heterogeneous bank supply chain systems from the perspective of measurement and decomposition. Comput. Ind. Eng. 113 (2017) 891–903. [Google Scholar]
  • J. Sun, G. Li and Z. Wang, Optimizing China’s energy consumption structure under energy and carbon constraints. Struct. Change Econ. Dyn. 47 (2018) 57–72. [Google Scholar]
  • M. Toloo, Selecting and full ranking suppliers with imprecise data: a new DEA method. The Int. J. Adv. Manuf. Technol. 74 (2014) 1141–1148. [Google Scholar]
  • M. Toloo and E.K. Mensah, Robust optimization with nonnegative decision variables: a DEA approach. Comput. Ind. Eng. 127 (2019) 313–325. [Google Scholar]
  • M. Toloo and S. Nalchigar, A new DEA method for supplier selection in presence of both cardinal and ordinal data. Expert Syst. App. 38 (2011) 14726–14731. [Google Scholar]
  • M. Toloo, E. Keshavarz and A. Hatami-Marbini, Dual-role factors for imprecise data envelopment analysis. Omega 77 (2018) 15–31. [PubMed] [Google Scholar]
  • Y.M. Wang, R. Greatbanks and J.B. Yang, Interval efficiency assessment using data envelopment analysis. Fuzzy Sets Syst. 153 (2005) 347–370. [Google Scholar]
  • J. Wu, J. Sun, M. Song and L. Liang, A ranking method for DMUs with interval data based on DEA cross-efficiency evaluation and TOPSIS. J. Syst. Sci. Syst. Eng. 22 (2013) 191–201. [Google Scholar]
  • F. Yang, F. Du, L. Liang and L. Ling, Full ranking procedure based on best and worst frontiers. J. Syst. Eng. Electron. 26 (2015) 514–522. [Google Scholar]
  • J. Zhu, Imprecise data envelopment analysis (IDEA): a review and improvement with an application. Eur. J. Oper. Res. 144 (2003) 513–529. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.