Free Access
Issue |
RAIRO-Oper. Res.
Volume 55, Number 2, March-April 2021
|
|
---|---|---|
Page(s) | 495 - 503 | |
DOI | https://doi.org/10.1051/ro/2021028 | |
Published online | 31 March 2021 |
- M. Bouzefrane, On alliances in graphs, Magister memory. University of Blida, Algeria (2010). [Google Scholar]
- R.C. Brigham, R.D. Dutton, T.W. Haynes and S.T. Hedetniemi, Powerful alliances in graphs. Discrete Math. 309 (2009) 2140–2147. [Google Scholar]
- A. Cami, H. Balakrishnan, N. Deo and R.D. Dutton, On the complexity of finding optimal global alliances. J. Combin. Math. Combin. Comput. 58 (2006) 23–31. [Google Scholar]
- M. Chellali, Offensive alliances in bipartite graphs. J. Combin. Math. Combin. Comput. 73 (2010) 245–255. [Google Scholar]
- M. Chellali and T. Haynes, Global alliances and independence in trees. Discuss. Math. Graph Theory 27 (2007) 19–27. [Google Scholar]
- O. Favaron, G. Fricke, W. Goddard, S.M. Hedetniemi, S.T. Hedetniemi, P. Kristiansen, R.C. Laskar and D.R. Skaggs, Offensive alliances in graphs. Discuss. Math. Graph Theory 24 (2004) 263–275. [Google Scholar]
- A. Harutyunyan, A fast algorithm for powerful alliances in trees. In: International Conference on Combinatorial Optimisation and Applications, COCOA (2010) 31–40. [Google Scholar]
- S.M. Hedetniemi, S.T. Hedetniemi and P. Kristiansen, Alliances in graphs. J. Combin. Math. Combin. Comput. 48 (2004) 157–177. [Google Scholar]
- S. Ouatiki, On the upper global powerful alliance number in trees. Accepted in Ars Combinatoria. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.