Open Access
Issue
RAIRO-Oper. Res.
Volume 55, Number 3, May-June 2021
Page(s) 1841 - 1863
DOI https://doi.org/10.1051/ro/2021080
Published online 22 June 2021
  • K.J. Arrow, T. Harris and J. Marschak, Optimal inventory policy. Econometrica 19 (1951) 250–272. [Google Scholar]
  • M. Bakker, J. Riezebos and R.H. Teunter, Review of inventory systems with deterioration since 2001. Eur. J. Oper. Res. 221 (2012) 275–284. [Google Scholar]
  • S. Benjaafar, D. Chen and Y. Yu, Optimal policies for inventory systems with concave ordering costs. Naval Res. Logistics 65 (2018) 291–302. [CrossRef] [Google Scholar]
  • L. Benkherouf and A. Bensoussan, Optimality of an (s, S) policy with compound Poisson and diffusion demands: a quasi-variational inequalities approach. SIAM J. Control Optim. 48 (2009) 756–762. [CrossRef] [Google Scholar]
  • L. Benkherouf and B.H. Gilding, Optimal policies for a deterministic continuous-time inventory model with several suppliers. RAIRO Oper. Res. 55 (2021) S947–S966. [CrossRef] [EDP Sciences] [Google Scholar]
  • L. Benkherouf and M. Johnson, Optimality of (s, S) policies for jump inventory models. Math. Methods Oper. Res. 76 (2012) 377–393. [CrossRef] [Google Scholar]
  • A. Bensoussan, Dynamic Programming and Inventory Control. IOS Press, Amsterdam (2011). [Google Scholar]
  • A. Bensoussan and J.-L. Lions, Impulse Control and Quasi-Variational Inequalities. Gauthier-Villars, Paris (1984). [Google Scholar]
  • A. Bensoussan, R.H. Liu and S.P. Sethi, Optimality of an (s, S) policy with compound Poisson and diffusion demands: a quasi-variational inequalities approach. SIAM J. Control Optim. 44 (2005) 1650–1676. [CrossRef] [Google Scholar]
  • A. Bensoussan, S. Skaaning and J. Turi, Inventory control with fixed cost and price optimization in continuous time. J. Appl. Anal. Comput. 8 (2018) 805–835. [Google Scholar]
  • C.W. Churchman, R.L. Ackoff and E.L. Arnoff, Introduction to Operations Research. John Wiley & Sons, New York (1957). [Google Scholar]
  • E.J. Fox, R. Metters and J. Semple, Optimal inventory policies with two suppliers. Oper. Res. 54 (2006) 389–393. [CrossRef] [Google Scholar]
  • K.L. Helmes, R.H. Stockbridge and C. Zhu, A measure approach for continuous inventory models: discounted cost criterion. SIAM J. Control Optim. 53 (2015) 2100–2140. [Google Scholar]
  • K.L. Helmes, R.H. Stockbridge and C. Zhu, Continuous inventory models of diffusion type: long-term average cost criterion. Ann. Appl. Probab. 27 (2017) 1831–1885. [Google Scholar]
  • K.L. Helmes, R.H. Stockbridge and C. Zhu, A weak convergence approach to inventory control using a long-term average criterion. Adv. Appl. Probab. 50 (2018) 1032–1074. [Google Scholar]
  • F.S. Hillier and G.J. Lieberman, Introduction to Operations Research. Holden-Day, San Francisco (1967). [Google Scholar]
  • P.L. Lions and B. Perthame, Quasi-variational inequalities and ergodic impulse control. SIAM J. Control Optim. 24 (1986) 604–615. [Google Scholar]
  • J. Liu, K.F.C. Yiu and A. Bensoussan, Optimal inventory control with jump diffusion and nonlinear dynamics in the demand. SIAM J. Control Optim. 56 (2018) 53–74. [Google Scholar]
  • E.L. Porteus, On the optimality of generalized (s, S) policies. Manage. Sci. 17 (1971) 411–426. [Google Scholar]
  • E.L. Porteus, The optimality of generalized (s, S) policies under uniform demand densities. Manage. Sci. 18 (1972) 644–646. [Google Scholar]
  • E.L. Porteus, Foundations of Stochastic Inventory Theory. Stanford University Press, Stanford, CA (2002). [Google Scholar]
  • H. Scarf, The optimality of (s, S) policies in the dynamic inventory problem, in Mathematical Methods in the Social Sciences 1959, edited by K.J. Arrow, S. Karlin and P. Suppes. Stanford University Press, Stanford, CA (1960) 196–202. [Google Scholar]
  • T.L. Urban, Inventory models with inventory-level-dependent demand: a comprehensive review and unifying theory. Eur. J. Oper. Res. 162 (2005) 792–804. [Google Scholar]
  • A.F. Veinott, On the optimality of (s, S) inventory policies: new conditions and a new proof. SIAM J. Appl. Math. 14 (1966) 1067–1083. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.