Open Access
RAIRO-Oper. Res.
Volume 55, Number 3, May-June 2021
Page(s) 1825 - 1840
Published online 22 June 2021
  • N. Adler, L. Friedman and Z. Sinuany-Stern, Review of ranking methods in the data envelopment analysis context. Eur. J. Oper. Res. 140 (2002) 249–265. [Google Scholar]
  • A. Aldamak and S. Zolfaghari, Review of efficiency ranking methods in data envelopment analysis., Measurement 106 (2017) 161–172. [Google Scholar]
  • P. Andersen and N.C. Petersen, A procedure for ranking efficient units in data envelopment analysis. Manage. Sci. 39 (1993) 1261–1264. [Google Scholar]
  • S. Ang, M. Chen and F. Yang, Group cross-efficiency evaluation in data envelopment analysis: An application to taiwan hotels. Comput. Ind. Eng. 125 (2018) 190–199. [Google Scholar]
  • M.Z. Angiz, A. Mustafa and M.J. Kamali, Cross-ranking of decision making units in data envelopment analysis. Appl. Math. Model. 37 (2013) 398–405. [Google Scholar]
  • R. Azizi and R. Kazemi Matin, Ranking two-stage production units in data envelopment analysis. Asia-Pac. J. Oper. Res. 33 (2016) 1650002. [Google Scholar]
  • R.D. Banker and H. Chang, The super-efficiency procedure for outlier identification, not for ranking efficient units. Eur. J. Oper. Res. 175 (2006) 1311–1320. [Google Scholar]
  • A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
  • A. Charnes, W.W. Cooper, B. Golany, R. Halek, G. Klopp, E. Schmitz and D. Thomas, Two phase data envelopment analysis approaches to policy evaluation and management of army recruiting activities: Tradeoffs between joint services and army advertising. Center for Cybernetic Studies. University of Texas-Austin Austin, Texas, USA (1986). [Google Scholar]
  • Y. Chen, Ranking efficient units in DEA. Omega 32 (2004) 213–219. [Google Scholar]
  • Y. Chen, W.D. Cook, N. Li and J. Zhu, Additive efficiency decomposition in two-stage DEA. Eur. J. Oper. Res. 196 (2009) 1170–1176. [Google Scholar]
  • W.D. Cook and J. Zhu, Within-group common weights in DEA: An analysis of power plant efficiency. Eur. J. Oper. Res. 178 (2007) 207–216. [CrossRef] [Google Scholar]
  • W.D. Cook, L. Liang and J. Zhu, Measuring performance of two-stage network structures by DEA: a review and future perspective. Omega 38 (2010) 423–430. [Google Scholar]
  • D.K. Despotis, D. Sotiros and G. Koronakos, A network DEA approach for series multi-stage processes. Omega 61 (2016) 35–48. [Google Scholar]
  • J. Doyle and R. Green, Efficiency and cross-efficiency in DEA: Derivations, meanings and uses. J. Oper. Res. Soc. 45 (1994) 567–578. [Google Scholar]
  • A. Esmaeilzadeh and R. Kazemi Matin, Multi-period efficiency measurement of network production systems. Measurement 134 (2019) 835–844. [CrossRef] [Google Scholar]
  • C. Guo, R.A. Shureshjani, A.A. Foroughi and J. Zhu, Decomposition weights and overall efficiency in two-stage additive network DEA. Eur. J. Oper. Res. 257 (2017) 896–906. [Google Scholar]
  • G.R. Jahanshahloo, H.V. Junior, F.H. Lotfi and D. Akbarian, A new DEA ranking system based on changing the reference set. Eur. J. Oper. Res. 181 (2007) 331–337. [Google Scholar]
  • C. Kao, Efficiency decomposition in network data envelopment analysis: A relational model. Eur. J. Oper. Res. 192 (2009) 949–962. [Google Scholar]
  • C. Kao and S.-N. Hwang, Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in taiwan. Eur. J. Oper. Res. 185 (2008) 418–429. [CrossRef] [Google Scholar]
  • L. Khoshandam, A. Amirteimoori and R. Kazemi Matin, Marginal rates of substitution in the presence of non-discretionary factors: A data envelopment analysis approach. Measurement 58 (2014) 409–415. [Google Scholar]
  • L. Khoshandam, R. Kazemi Matin and A. Amirteimoori, Marginal rates of substitution in data envelopment analysis with undesirable outputs: A directional approach. Measurement 68 (2015) 49–57. [Google Scholar]
  • F. Koushki, Performance measurement and productivity management in production units with network structure by identification of the most productive scale size pattern. Int. J. Supp. Oper. Manage. 5 (2018) 379–395. [Google Scholar]
  • H.F. Lewis and T.R. Sexton, Network DEA: efficiency analysis of organizations with complex internal structure. Comput. Oper. Res. 31 (2004) 1365–1410. [CrossRef] [Google Scholar]
  • H.H. Liu, Y.Y. Song and G.L. Yang, Cross-efficiency evaluation in data envelopment analysis based on prospect theory. Eur. J. Oper. Res. 273 (2019) 364–375. [Google Scholar]
  • S. Mehrabian, M.R. Alirezaee and G.R. Jahanshahloo, A complete efficiency ranking of decision making units in data envelopment analysis. Comput. Optim. Appl. 14 (1999) 261–266. [Google Scholar]
  • A. Memariani and G.R. Jahanshahloo, A model for ranking decision making units in data envelopment analysis. Ricerca Operativa (2001). [Google Scholar]
  • F. Rolf and G. Shawna, Network DEA. Socio-Econ. Plan. Sci. 34 (2000) 35–49. [CrossRef] [Google Scholar]
  • A.A. Salo and R.P. Hämäläinen, Preference assessment by imprecise ratio statements. Oper. Res. 40 (1992) 1053–1061. [Google Scholar]
  • A.A. Salo, R.P. Hämäläinen, On the measurement of preferences in the analytic hierarchy process. J. Multi-Crit. Dec. Anal. 6 (1997) 309–319. [Google Scholar]
  • A. Salo and A. Punkka, Ranking intervals and dominance relations for ratio-based efficiency analysis. Manage. Sci. 57 (2011) 200–214. [CrossRef] [Google Scholar]
  • T.R. Sexton, R.H. Silkman and A.J. Hogan, Data envelopment analysis: Critique and extensions. New Direct. Program Eval. 1986 (1986) 73–105. [Google Scholar]
  • D. Sotiros, G. Koronakos and D.K. Despotis, Dominance at the divisional efficiencies level in network DEA: The case of two-stage processes. Omega 85 (2019) 144–155. [Google Scholar]
  • M. Tavana, M.A. Kaviani, D.D. Caprio and B. Rahpeyma, A two-stage data envelopment analysis model for measuring performance in three-level supply chains. Measurement 78 (2016) 322–333. [Google Scholar]
  • K. Tone and M. Tsutsui, Network DEA: A slacks-based measure approach. Eur. J. Oper. Res. 197 (2009) 243–252. [CrossRef] [Google Scholar]
  • A.M. Torgersen, F.R. Førsund and S.A.C. Kittelsen, Slack-adjusted efficiency measures and ranking of efficient units. J. Product. Anal. 7 (1996) 379–398. [Google Scholar]
  • M.D. Troutt, Derivation of the maximin efficiency ratio model from the maximum decisional efficiency principle. Ann. Oper. Res. 73 (1997) 323–338. [Google Scholar]
  • J. Wu, J. Chu, J. Sun, Q. Zhu and L. Liang, Extended secondary goal models for weights selection in DEA cross-efficiency evaluation. Comput. Ind. Eng. 93 (2016) 143–151. [Google Scholar]
  • J. Wu, J. Chu, Q. Zhu, Y. Li and L. Liang, Determining common weights in data envelopment analysis based on the satisfaction degree. J. Oper. Res. Soc. 67 (2016) 1446–1458. [Google Scholar]
  • J. Zhu, Quantitative Models for Performance Evaluation and Benchmarking: Data Envelopment Analysis with Spreadsheets and Dea Excel Solver, Vol 51. Springer Science & Business Media (2003). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.