Open Access
RAIRO-Oper. Res.
Volume 55, Number 3, May-June 2021
Page(s) 1715 - 1741
Published online 17 June 2021
  • Y. Almogy and O. Levin, The fractional fixed charge problem. Nav. Res. Logist. Q. 18 (1971) 307–315. [Google Scholar]
  • P. Anukokila, B. Radhakrishnan and A. Anju, Goal programming approach for solving multi-objective fractional transportation problem with fuzzy parameters. RAIRO-Oper. Res. 53 (2019) 157–178. [CrossRef] [EDP Sciences] [Google Scholar]
  • R. Arya, P. Singh, S. Kumari and M.S. Obaidat, An approach for solving fully fuzzy multi-objective linear fractional optimization problems. Soft Comput. 24 (2020) 9105–9119. [CrossRef] [Google Scholar]
  • R.E. Bellman and L.A. Zadeh, Decision making in fuzzy environment. Manage. Sci. 17 (1970) 141–164. [CrossRef] [Google Scholar]
  • D. Bhati and P. Singh, Branch and bound computational method for multi-objective linear fractional optimization problem. Neural Comput. Appl. 28 (2017) 3341–3351. [CrossRef] [Google Scholar]
  • A. Charnes and W.W. Cooper, Programming with linear fractional functionals. Nav. Res. Logist. Q. 9 (1962) 181–186. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Chakraborty and S. Gupta, Fuzzy mathematical programming for multi objective linear fractional programming problem. Fuzzy Set. Syst. 125 (2002) 335–342. [CrossRef] [Google Scholar]
  • C.-T. Chang, Fuzzy linearization strategy for multiple objective linear fractional programming with binary utility functions. Comput. Ind. Eng. 112 (2017) 437–446. [CrossRef] [Google Scholar]
  • S.K. Das, S.A. Edalatpanah and T. Mandal, A proposed model for solving fuzzy linear fractional programming problem: Numerical point of view. J. Comput. Sci. 25 (2018) 367–375. [CrossRef] [Google Scholar]
  • D. Dubois, H. Prade, H. Farreny, R. Martin-Clouaire, C. Testemale and E. Harding, Possibility theory. Plenum Press, New York (1988). [Google Scholar]
  • A. Ebrahimnejad, S.J. Ghomi and S.M. Mirhosseini-Alizamini, A revisit of numerical approach for solving linear fractional programming problem in a fuzzy environment. Appl. Math. Model. 57 (2018) 459–473. [CrossRef] [Google Scholar]
  • S. Ghosh, S.K. Roy, A. Ebrahimnejad and J.L. Verdegay, Multi-objective fully intuitionistic fuzzy fixed-charge solid transportation problem. Complex Intell. Syst. 7 (2021) 1009–1023. [CrossRef] [Google Scholar]
  • S. Ghosh and S.K. Roy, Fuzzy-rough multi-objective product blending fixed-charge transportation problem with truck load constraints through transfer station. RAIRO-Oper. Res. 55 (2021) S2923–S2952. [CrossRef] [EDP Sciences] [Google Scholar]
  • A. Goli, H.K. Zara, T.R. Moghaddam and A. Sadegheih, Multiobjective fuzzy mathematical model for a financially constrained closed-loop supply chain with labor employment. Comput. Intell. 36 (2020) 4–34. [CrossRef] [Google Scholar]
  • A. Goli, H.K. Zara, T.R. Moghaddam and A. Sadegheih, Hybrid artificial intelligence and robust optimization for a multiobjective product portfolio problem Case study: The dairy products industry. Comput. Ind. Eng. 137 (2019) 106090. [CrossRef] [Google Scholar]
  • A. Goli and B. Malmir, A covering tour approach for disaster relief locating and routing with fuzzy demand. Int. J. Intell. Transp. Syst. Res. 18 (2020) 140–152. [Google Scholar]
  • A. Goli, E.B. Tirkolaee and N.S. Aydin, Fuzzy integrated cell formation and production scheduling considering automated guided vehicles and human factors. IEEE Trans. Fuzzy Syst. (2020). [PubMed] [Google Scholar]
  • W.M. Hirsch and G.B. Dantzig, The fixed charge problem. Nav. Res. Logist. Q. 15 (1968) 413–424. [CrossRef] [Google Scholar]
  • H. Jiao and S. Liu, A new linearization technique for minmax linear fractional programming. Int. J. Comput. Math. 91 (2014) 1730–1743. [CrossRef] [Google Scholar]
  • P. Kaur, V. Verma and K. Dahiya, Capacitated two-stage time minimization transportation problem with restricted flow. RAIRO-Oper. Res. 51 (2017) 447–467. [CrossRef] [EDP Sciences] [Google Scholar]
  • L. Li and K.K. Lai, A fuzzy approach to the multi-objective transportation problem. Comput. Oper. Res. 27 (2000) 43–57. [CrossRef] [Google Scholar]
  • B. Liu, Theory and practice of uncertain programming. Physica-Verlag, Heidelberg (2002). [CrossRef] [Google Scholar]
  • B. Liu and K. Iwamura, Chance constrained programming with fuzzy parameters. Fuzzy Set. Syst. 94 (1998) 227–237. [CrossRef] [Google Scholar]
  • B. Liu and Y.K. Liu, Expected value of fuzzy variable and fuzzy expected value model. IEEE Trans. Fuzzy Syst. 10 (2002) 445–450. [CrossRef] [Google Scholar]
  • A. Mahmoodirad, R. Dehghan and S. Niroomand, Modelling linear fractional transportation problem in belief degree based uncertain environment. J. Exp. Theor. Artif. Intell. 31 (2018) 1–16. [Google Scholar]
  • G. Maity and S.K. Roy, Solving a multi-objective transportation problem with nonlinear cost and multi-choice demand. Int. J. Manag. Sci. Eng. Manag. 11 (2016) 62–70. [Google Scholar]
  • G. Maity, D. Mardanya, S.K. Roy and G.W. Weber, A new approach for solving dual-hesitant fuzzy transportation problem with restrictions. Sadhana 44 (2019) 1–11. [CrossRef] [Google Scholar]
  • S. Midya and S.K. Roy, Solving single-sink fixed-charge multi-objective multi-index stochastic transportation problem. Am. J. Math. Manag. Sci. 33 (2014) 300–314. [Google Scholar]
  • S. Midya and S.K. Roy, Analysis of interval programming in different environments and its application to fixed-charge transportation problem. Discrete Math. Algorithm Appl. 9 (2017) 750040. [CrossRef] [Google Scholar]
  • S. Midya and S.K. Roy, Multi-objective fixed-charge transportation problem using rough programming. Int. J. Oper. Res. 37 (2020) 377–395. [CrossRef] [Google Scholar]
  • S. Midya, S.K. Roy and V.F. Yu, Intuitionistic fuzzy multi-stage multi-objective fixed-charge solid transportation problem in a green supply chain. Int. J. Mach. Learn. Cybern. 12 (2021) 699–717. [CrossRef] [Google Scholar]
  • S. Mishra, Weighting method for bi-level fractional programming problems. Eur. J. Oper. Res. 183 (2007) 296–302. [CrossRef] [Google Scholar]
  • B. Mishra, K.A. Nishad and S.R. Singh, Fuzzy multi-fractional programming for land use planning in agricultural production system. Fuzzy Info. Eng. 6 (2014) 245–262. [CrossRef] [Google Scholar]
  • T. Paksoy, N.Y. Pehlivan, E. Özceylan, Application of fuzzy optimization to a supply chain network design: A case study of an edible vegetable oils manufacturer. Appl. Math. Model. 36 (2012) 2762–2776. [CrossRef] [Google Scholar]
  • A. Paul, M. Pervin, S.K. Roy, G.W. Weber and A. Mirzazadeh, Effect of price-sensitive demand and default risk on optimal credit period and cycle time for a deteriorating inventory model. RAIRO-Oper. Res. 55 (2021) S2575–S2592. [CrossRef] [EDP Sciences] [Google Scholar]
  • Z. Pawlak, Rough sets. Int. J. Info. Comput. Sci. 11 (1982) 341–356. [CrossRef] [Google Scholar]
  • S.K. Roy, G. Maity, G.W. Weber and S.Z.A. Gök, Conic scalarization approach to solve multi-choice multi-objective transportation problem with interval Goal. Ann. Oper. Res. 253 (2017) 599–620. [CrossRef] [Google Scholar]
  • S.K. Roy, S. Midya and V.F. Yu, Multi-objective fixed-charge transportation problem with random rough variables. Int. J. Uncertain. Fuzziness Knowledge-Based Syst. 26 (2018) 971–996. [CrossRef] [Google Scholar]
  • S.K. Roy and S. Midya, Multi-objective fixed-charge solid transportation problem with product blending under intuitionistic fuzzy environment. Appl. Intell. 49 (2019) 3524–3538. [Google Scholar]
  • S.K. Roy, S. Midya and G.W. Weber, Multi-objective multi-item fixed-charge solid transportation problem under twofold uncertainty. Neural Comput. Appl. 31 (2019) 8593–8613. [CrossRef] [Google Scholar]
  • S. Sagratella, M. Schmidt and N. Sudermann-Merx, The noncooperative fixed charge transportation problem. Eur. J. Oper. Res. 284 (2019) 373–382. [CrossRef] [Google Scholar]
  • S. Schaible, Fractional programming I: Duality. Manag. Sci. 22 (1976) 858–867. [CrossRef] [Google Scholar]
  • M. Sivri, I. Emiroglu, C. Guler and F. Tasci, A solution proposal to the transportation problem with the linear fractional objective function. In: Proc. of the 4th IEEE International Conference on Modeling, Simulation and Applied Optimization, Kuala Lumpur, Malaysia (2011). [Google Scholar]
  • B. Stanojević and M. Stanojević, Comment on “Fuzzy mathematical programming for multi-objective linear fractional programming problem”. Fuzzy Set. Syst. 246 (2014) 156–159. [CrossRef] [Google Scholar]
  • Z. Tao and J. Xu, A class of rough multiple objective programming and its application to solid transportation problem. Info. Sci. 188 (2012) 215–235. [CrossRef] [Google Scholar]
  • M.D. Toksari, Taylor series approach to fuzzy multi-objective linear fractional programming. Info. Sci. 178 (2008) 1189–1204. [CrossRef] [Google Scholar]
  • M. Upmanyu and R.R. Saxena, On solving a multi-objective fixed charge problem with imprecise fractional objectives. Appl. Soft Comput. 40 (2016) 64–69. [CrossRef] [Google Scholar]
  • E.B. Tirkolaee, A. Goli, A. Faridnia, M. Soltani and G.W. Weber, Multi-objective optimization for the reliable pollution-routing problem with cross-dock selection using Pareto-based algorithms. J. Clean. Prod. 276 (2020). [Google Scholar]
  • P. Vasant, G.W. Weber and V.N. Dieu, Handbook of Research on Modern Optimization Algorithms and Applications in Engineering and Economics. IGI Global, Hershey, PA (2016). [Google Scholar]
  • C. Veeramani and M. Sumathi, Fuzzy mathematical programming approach for solving fuzzy linear fractional programming problem. RAIRO-Oper. Res. 48 (2014) 109–122. [CrossRef] [EDP Sciences] [Google Scholar]
  • F. Xie and R. Jia, Nonlinear fixed charge transportation problem by minimum cost flow-based genetic algorithm. Comput. Ind. Eng. 63 (2012) 763–778. [CrossRef] [Google Scholar]
  • J. Xu and Z. Tao, Rough multiple objective decision making. Taylor and Francis Group, CRC Press, USA (2012). [Google Scholar]
  • J. Xu and L. Zhao, A class of fuzzy rough expected value multi-objective decision making model and its application to inventory problems. Comput. Math. Appl. 56 (2008) 2107–2119. [CrossRef] [Google Scholar]
  • R.R. Yager, A procedure for ordering fuzzy subsets of the unit interval. Info. Sci. 24 (1981) 143–161. [CrossRef] [Google Scholar]
  • L.A. Zadeh, Fuzzy sets. Info. Control 8 (1965) 338–353. [CrossRef] [Google Scholar]
  • L.A. Zadeh, Fuzzy sets as a basic for theory of possibility. Fuzzy Set. Syst. 1 (1978) 3–28. [CrossRef] [MathSciNet] [Google Scholar]
  • H.J. Zimmermann, Fuzzy programming and linear programming with several objective functions. Fuzzy Set. Syst. 1 (1978) 45–55. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.